[en] Solid waste disposai is a major problem arising due to urbanization and development of the society. Secured landfilling is a scientific practice to manage solid waste for its minimum impact on the environment. However, the leachate generated from the landfill is a major concern to the environment. There are several off-site treatment technologies which are energy and cost-intensive. Additionally, transportation of landfill can cause hazardous effects. Bio-electrochemical treatment technologies such as microbial fuel cell (MFC) have the capability to treat the landfill leachate on-site, along with production of bioelectricity and resource recovery. Vast array of pollutant containing leachate act as potential substrate and its high conductivity helps in the electrochemical reactions of MFC. The unstable load of pollutants contained in landfill leachate causes toxicity, which hampers the performance of MFC. Thus, pre-treatment or dilution of leachate could solve this problem and MFC can be used for landfill leachate efficiently at a secondary stage.
Disciplines :
Civil engineering
Author, co-author :
Dwivedi, Saurabh; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
Patro, Ashmita; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
MITTAL, Yamini ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
Gupta, Supriya; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
Srivastava, Pratiksha; Department of Chemical and Environmental Technology, University Rey Juan Carlos, Móstoles, Madrid, Spain
External co-authors :
yes
Language :
English
Title :
Microbial fuel cell for landfill leachate treatment
Adekunle A., Raghavan V. and Tartakovsky B. (2019a). A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochemistry, 126, 105-112, https://doi.org/10.1016/j.bioelechem.2018.11.007
Adekunle A., Raghavan V. and Tartakovsky B. (2019b). On-line monitoring of heavy metals- related toxicity with a microbial fuel cell biosensor. Biosensors and Bioelectronics, 132, 382-390, https://doi.org/10.1016/j.bios.2019.03.011
Aziz S. Q., Aziz H. A., Yusoff M. S., Bashir M. J. K. and Umar M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, 91(12), 2608-2614, https://doi.org/10.1016/j. jenvman.2010.07.042
Baun D. L. and Christensen T. H. (2004). Speciation of heavy metals in landfill leachate: a review. Waste Management and Research, 22(1), 3-23, https://doi.org/10.1177/0734242X04042146
Bernard C., Colin J. R. and Anne L. D. D. (1997). Estimation of the hazard of landfills throughtoxicity testing of leachates. Comparisonof physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests. Chemosphere, 35(11), 2783-2796, https://doi.org/10.1016/S0045-6535(97)00332-9
Chaudhary R., Nain P. and Kumar A. (2021). Temporal variation of leachate pollution index of Indian landfill sites and associated human health risk. Environmental Science and Pollution Research, 28(22), 28391-28406, https://doi.org/10.1007/s11356-021-12383-1
Chaudhuri S. K. and Lovley D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229-1232, https://doi.org/10.1038/nbt867
Cheng P., Shan R., Yuan H.-R., Tan X., Chen Y. and Wu J. (2022). Synchronous bio- degradation and bio-electricity generation in a microbial fuel cell with aged and fresh leachate from the identical subtropical area. Journal of Environmental Management, 316, 115017, https://doi.org/10.1016/j.jenvman.2022.115017
Colantonio N. (2016). Heavy Metal Removal From Wastewater Using Microbial Electrolysis Cells. McMaster University, 78. Criteria for landfill management CPCB.pdf. (n.d.).
Damiano L., Jambeck J. R. and Ringelberg D. B. (2014). Municipal solid waste landfill leachate treatment and electricity production using microbial fuel cells. Applied Biochemistry and Biotechnology, 173(2), 472-485, https://doi.org/10.1007/s12010-014-0854-x
Dantre A., Gupta S. and Com W. W. W. O. (2017). Characterization of leachate from selected landfills. Open Access International Journal of Science & Engineering, 2(9), 69-74.
Deng L., Ngo H.-H., Guo W., Wang J. and Zhang H. (2018). Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater. Chemical Engineering Journal, 338, 166-175, https://doi.org/10.1016/j. cej.2018.01.028
Deng Y., Zhu X., Chen N., Feng C., Wang H., Kuang P. and Hu W. (2020). Review on electrochemical system for landfill leachate treatment: performance, mechanism, application, shortcoming, and improvement scheme. Science of the Total Environment, 745, 140768, https://doi.org/10.1016/j.scitotenv.2020.140768
Elmaadawy K., Hu J., Guo S., Hou H. and Xu J. (2020a). Enhanced treatment of land fill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system. Bioresource Technology, 310, 123420, https://doi.org/10.1016/j. biortech.2020.123420
Elmaadawy K., Liu B., Hu J., Hou H. and Yang J. (2020b). Performance evaluation of microbial fuel cell for landfill leachate treatment: research updates and synergistic effects of hybrid systems. Journal of Environmental Sciences, 96, 1-20, https://doi. org/10.1016/j.jes.2020.05.005
Ezziat L., Elabed A., Ibnsouda S. and El Abed S. (2019). Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Frontiers in Energy Research, 7(January), 1-13, https://doi.org/10.3389/fenrg.2019.00001
Feng C., Huang L., Yu H., Yi X. and Wei C. (2015). Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Research, 76, 160-170, https://doi.org/10.1016/j.watres.2015.03.001
Feng Q., Xu L., Liu C., Wang H., Jiang Z., Xie Z., Liu Y., Yang Z. and Qin Y. (2020a). Treatment of shale gas fracturing wastewater using microbial fuel cells: mixture of aging landfill leachate and traditional aerobic sludge as catholyte. Journal of Cleaner Production, 269, 121776, https://doi.org/10.1016/j.jclepro.2020.121776
Feng Q., Xu L., Xu Y., Liu C., Lu Y. and Wang H. (2020b). Treatment of aged landfill leachate by a self-sustained microbial fuel cell-microbial electrolysis cell system. International Journal of Electrochemical Science, 15, 1022-1033, https://doi. org/10.20964/2020.01.19
Gálvez A., Greenman J. and Ieropoulos I. (2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology, 100(21), 5085-5091, https://doi.org/10.1016/j.biortech.2009.05.061
Ganesh K. and Jambeck J. R. (2013). Treatment of landfill leachate using microbial fuel cells: alternative anodes and semi-continuous operation. Bioresource Technology, 139, 383-387, https://doi.org/10.1016/j.biortech.2013.04.013
Greenman J., Gálvez A., Giusti L. and Ieropoulos I. (2009). Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme and Microbial Technology, 44(2), 112-119, https://doi.org/10.1016/j.enz mictec.2008.09.012
Gupta N., Yadav K. K. and Kumar V. (2015). A review on current status of municipal solid waste management in India. Journal of Environmental Sciences, 37, 206-217, https://doi.org/10.1016/j.jes.2015.01.034
Harmsen J. (1983). Identification of organic compounds in leachate from a waste tip. Water Research, 17(6), 699-705, https://doi.org/10.1016/0043-1354(83)90239-7
Hassan M., Pous N., Xie B., Colprim J., Balaguer M. D. and Puig S. (2017). Influence of iron species on integrated microbial fuel cell and electro-Fenton LEQUiA, Institute of the Environment, University of Girona, C/Maria Aurelia Type of contribution: research article. Chemical Engineering Journal, 328, 57-65, https://doi.org/10.1016/j. cej.2017.07.025
Hassan M., Wei H., Qiu H., Jaafry S. W. H., Su Y. and Xie B. (2018). Power generation and pollutants removal from landfill leachate in microbial fuel cell: variation and influence of anodic microbiomes. Bioresource Technology, 247(July), 434-442, https://doi.org/10.1016/j.biortech.2017.09.124
Hernández-Flores G., Poggi-Varaldo H. M., Solorza-Feria O., Romero-Castañón T., Ríos-Leal E., Galíndez-Mayer J. and Esparza-García F. (2015). Batch operation of a microbial fuel cell equipped with alternative proton exchange membrane. International Journal of Hydrogen Energy, Special Issue on XIV International Congress of the Mexican Hydrogen Society, 30 September-4 October 2014, Cancun, Mexico, 40(48), 17323-17331, https://doi.org/10.1016/j.ijhydene.2015.06.057
Hernández-Flores G., Poggi-Varaldo H. M., Romero-Castañón T., Solorza-Feria O. and Rinderknecht-Seijas N. (2017a). Harvesting energy from leachates in microbial fuel cells using an anion exchange membrane. International Journal of Hydrogen Energy, 42(51), 30374-30382, https://doi.org/10.1016/j.ijhydene.2017.08.201
Hernández-Flores G., Solorza-Feria O. and Poggi-Varaldo H. M. (2017b). Bioelectricity generation from wastewater and actual landfill leachates: a multivariate analysis using principal component analysis. International Journal of Hydrogen Energy, 42(32), 20772-20782, https://doi.org/10.1016/j.ijhydene.2017.01.021
Huang L., Chai X., Chen G. and Logan B. E. (2011). Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environmental Science and Technology, 45(11), 5025-5031, https://doi.org/10.1021/es103875d
Huang L., Li X., Cai T. and Huang M. (2018). Electrochemical performance and community structure in three microbial fuel cells treating landfill leachate. Process Safety and Environmental Protection, 113, 378-387, https://doi.org/10.1016/j. psep.2017.11.008
Ieropoulos I., Gálvez A. and Greenman J. (2013). Effects of sulphate addition and sulphide inhibition on microbial fuel cells. Enzyme and Microbial Technology, 52(1), 32-37, https://doi.org/10.1016/j.enzmictec.2012.10.002
Iskander S. M., Brazil B., Novak J. T. and He Z. (2016). Resource recovery from landfill leachate using bioelectrochemical systems: opportunities, challenges, and perspectives. Bioresource Technology, 201, 347-354, https://doi.org/10.1016/j.bio rtech.2015.11.051
Iskander S., Novak J. T., Brazil B. and He Z. (2017). Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell. Environmental Science and Pollution Research, 24, 26040-26048, https://doi. org/10.1007/s11356-017-0231-8
Jakobsen R., Albrechtsen H.-J., Rasmussen M., Bay H., Bjerg P. L. and Christensen T. H. (1998). H2 concentrations in a landfill leachate plume (Grindsted, Denmark): in situ energetics of terminal electron acceptor processes. Environmental Science & Technology, 32(14), 2142-2148, https://doi.org/10.1021/es970858x
Jiang N., Huang L., Huang M., Cai T., Song J., Zheng S., Guo J., Kong Z. and Chen L. (2021). Electricity generation and pollutants removal of landfill leachate by osmotic microbial fuel cells with different forward osmosis membranes. Sustainable Environment Research, 31(1), 22, https://doi.org/10.21203/rs.3.rs-66054/v3
Kelly P. T. and He Z. (2014). Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresource Technology, 153, 351-360, https://doi.org/10.1016/j. biortech.2013.12.046
Kimura Z. and Okabe S. (2013). Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. The ISME Journal, 7(8), 1472-1482, https://doi.org/10.1038/ismej.2013.40
Kjeldsen P., Barlaz M. A., Rooker A. P., Baun A., Ledin A. and Christensen T. H. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32(4), 297-336, https://doi. org/10.1080/10643380290813462
Kumar S., Katoria D. and Singh G. (2013). Leachate treatment technologies. International Journal of Environmental Engineering and Management, 4(5), 439-444.
Kumar S. S., Malyan S. K., Basu S. and Bishnoi N. R. (2017). Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. Environmental Science and Pollution Research, 24(19), 16019-16030, https://doi. org/10.1007/s11356-017-9112-4
Kumar S. S., Kumar V., Kumar R., Malyan S. K. and Bishnoi N. R. (2019). Ferrous sulfate as an in-situ anodic coagulant for enhanced bioelectricity generation and COD removal from land fill leachate. Energy, 176, 570-581, https://doi.org/10.1016/j. energy.2019.04.014
Lakshmidevi R., Gandhi N. N. and Muthukumar K. (2020).Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell.
Lee H.-S., Parameswaran P., Kato-Marcus A., Torres C. I. and Rittmann B. E. (2008). Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research, 42(6), 1501-1510, https://doi.org/10.1016/j.watres.2007.10.036
Lee Y., Martin L., Grasel P., Tawfiq K. and Chen G. (2013). Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology. Environmental Technology, 34(19), 2727-2736, https://doi.org/10.1080/09593330.2013.788040
Li S. and Chen G. (2018). Effects of evolving quality of landfill leachate on microbial fuel cell performance. Waste Management & Research, 36(1), 59-67, https://doi. org/10.1177/0734242X17739969
Li Y., Lu A., Ding H., Wang X., Wang C., Zeng C. and Yan Y. (2010). Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Electrochemistry Communications, 12(7), 944-947, https://doi.org/10.1016/j.elecom.2010.04.027
Li J., Ge Z. and He Z. (2014). Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment. Journal of Chemical Technology & Biotechnology, 89(9), 1330-1336, https://doi.org/10.1002/jctb.4206
Lovley D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4(7), 497-508, https://doi.org/10.1038/nrmicro1442
Lu Y., Qin M., Yuan H., Abu-Reesh I. M. and He Z. (2014). When bioelectrochemical systems meet forward osmosis: accomplishing wastewater treatment and reuse through synergy. Water, 7(1), 38-50, https://doi.org/10.3390/w7010038
Luo H., Zeng Y., Cheng Y., He D. and Pan X. (2020). Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Science of the Total Environment, 703, 135468, https://doi.org/10.1016/j. scitotenv.2019.135468
Matassa S., Batstone D. J., Hülsen T., Schnoor J. and Verstraete W. (2015). Can direct conversionof usednitrogentonewfeedandproteinhelpfeedtheworld? Environmental Science & Technology, 49(9), 5247-5254, https://doi.org/10.1021/es505432w
Maturi K. C., Gupta A., Haq I. and Kalamdhad A. S. (2022). Chapter 7 - A glance over current status of waste management and landfills across the globe: a review. In: I. Haq, A. S. Kalamdhad and M. P. B. T.-B. and D. of M. in I. W. Shah (eds.), Elsevier, pp. 131-144, https://doi.org/10.1016/B978-0-323-88507-2.00001-4
McCutcheon J. R., McGinnis R. L. and Elimelech M. (2005). A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination, 174(1), 1-11, https://doi.org/10.1016/j.desal.2004.11.002
Modin O., Wang X., Wu X., Rauch S. and Fedje K. K. (2012). Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials, 235-236, 291-297, https://doi.org/10.1016/j.jhazmat.2012.07.058
Moharir P. V. and Tembhurkar A. R. (2018). Effect of recirculation on bioelectricity generation using microbial fuel cell with food waste leachate as substrate. International Journal of Hydrogen Energy, 43(21), 10061-10069, https://doi.org/10. 1016/j.ijhydene.2018.04.072
Nancharaiah Y. V., Venkata Mohan S. and Lens P. N. L. (2015). Metals removal and recovery in bioelectrochemical systems: a review. Bioresource Technology, 195, 102-114, https://doi.org/10.1016/j.biortech.2015.06.058
Nguyen H. T. H. and Min B. (2020). Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous fl ow through the chambers in series. Science of the Total Environment, 723, 138054, https://doi.org/10.1016/j. scitotenv.2020.138054
Nguyen H. T. H., Kakarla R. and Min B. (2017). Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. International Journal of Hydrogen Energy, 42(49), 29433-29442, https://doi. org/10.1016/j.ijhydene.2017.10.011
Ozkaya B., Demir A. and Bilgili M. S. (2006). Soluble substrate concentrations in leachate from field scale MSW test cells. Journal of Hazardous Materials, 134(1-3), 19-26, https://doi.org/10.1016/j.jhazmat.2005.11.046
Özkaya B., Cetinkaya A. Y., Cakmakci M., Karadağ D. and Sahinkaya E. (2013). Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material. Bioprocess and Biosystems Engineering, 36(4), 399-405, https://doi.org/10.1007/s00449-012-0796-z
Pandis P. K., Kamperidis T., Bariamis K., Vlachos I., Argirusis C., Stathopoulos V. N., Lyberatos G. and Tremouli A. (2022). Comparative study of different production methods of activated carbon cathodic electrodes in single chamber MFC treating municipal landfill leachate. Applied Sciences, 12(6), 2991, https://doi.org/10.3390/app12062991
Puig S., Serra M., Coma M., Cabré M., Dolors Balaguer M. and Colprim J. (2011). Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials, 185(2), 763-767, https://doi.org/10.1016/j.jhazmat.2010.09.086
Qin B., Luo H., Liu G., Zhang R., Chen S., Hou Y. and Luo Y. (2012). Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresource Technology, 121, 458-461 https://doi.org/10.1016/j.biortech.2012.06.068
Qin M., Molitor H., Brazil B., Novak J. T. and He Z. (2016). Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system. Bioresource Technology, 200, 485-492, https://doi.org/10.1016/j.biortech. 2015.10.066
Renou S., Givaudan J. G., Poulain S., Dirassouyan F. and Moulin P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150(3), 468-493, https://doi.org/10.1016/j.jhazmat.2007.09.077
Rozendal R. A., Leone E., Keller J. and Rabaey K. (2009). Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications, 11(9), 1752-1755, https://doi.org/10.1016/j.elecom.2009.07.008
Sharma K. D. and Jain S. (2020). Municipal solid waste generation, composition, and management: the global scenario. Social Responsibility Journal, 16(6), 917-948, https://doi.org/10.1108/SRJ-06-2019-0210
Shehzad A., Bashir M. J. K., Sethupathi S., Lim J.-W. and Younas M. (2016). Bioelectrochemical system for landfill leachate treatment-challenges, opportunities, and recommendations. Geosystem Engineering, 19(6), 337-345, https://doi.org/10. 1080/12269328.2016.1188029
Sonawane J. M., Adeloju S. B. and Ghosh P. C. (2017). Landfill leachate: a promising substrate for microbial fuel cells. International Journal of Hydrogen Energy, Special Issue on The 1st International Conference on Advanced Energy Materials (AEM2016), 12-14 September 2016, Surrey, England, 42(37), 23794-23798, https://doi.org/10.1016/j.ijhydene.2017.03.137
Srivastava P., Abbassi R., Yadav A. K., Garaniya V. and Asadnia M. (2020a). A review on the contribution of electron flow in electroactive wetlands: electricity generation and enhanced wastewater treatment. Chemosphere, 254, 126926, https://doi. org/10.1016/j.chemosphere.2020.126926
Srivastava P., Abbassi R., Yadav A. K., Garaniya V. and Khan F. (2020b). Microbial fuel cell-integrated wastewater treatment systems. In: Integrated Microbial Fuel Cells for Wastewater Treatment, Butterworth-Heinemann, Oxford, UK; Cambridge, US, pp. 29-46, https://doi.org/10.1016/B978-0-12-817493-7.00002-3
Srivastava P., Abbassi R., Yadav A., Garaniya V., Asadnia M., Lewis T. and Khan S. J. (2021a). Influence of applied potential on treatment performance and clogging behaviour of hybrid constructed wetland-microbial electrochemical technologies. Chemosphere, 284, 131296, https://doi.org/10.1016/j.chemosphere.2021.131296
Srivastava P., Belford A., Abbassi R., Asadnia M., Garaniya V. and Yadav A. K. (2021b). Low-power energy harvester from constructed wetland-microbial fuel cells for initiating a self-sustainable treatment process. Sustainable Energy Technologies and Assessments, 46, 101282, https://doi.org/10.1016/j.seta.2021.101282
Talboys P. J., Heppell J., Roose T., Healey J. R., Jones D. L. and Withers P. J. A. (2016). Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant and Soil, 401(1-2), 109-123, https://doi.org/10.1007/s11104-015-2747-3
Tandukar M., Huber S. J., Onodera T. and Pavlostathis S. G. (2009). Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environmental Science and Technology, 43(21), 8159-8165, https://doi.org/10.1021/es9014184
Tao W. and Ukwuani A. T. (2015). Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content. Chemical Engineering Journal, 280, 188-196, https://doi.org/10.1016/j.cej.2015.05.119
Teng S.-X., Tong Z.-H., Li W.-W., Wang S.-G., Sheng G.-P., Shi X.-Y., Liu X.-W. and Yu H.-Q. (2010). Electricity generation from mixed volatile fatty acids using microbial fuel cells. Applied Microbiology and Biotechnology, 87(6), 2365-2372, https://doi. org/10.1007/s00253-010-2746-5
Tugtas A. E., Cavdar P. and Calli B. (2013). Bio-electrochemical post-treatment of anaerobically treated landfill leachate. Bioresource Technology, 128, 266-272, https://doi.org/10.1016/j.biortech.2012.10.035
Vázquez-Larios A. L., Solorza-Feria O., Poggi-Varaldo H. M., de Guadalupe González- Huerta R., Ponce-Noyola M. T., Ríos-Leal E. and Rinderknecht-Seijas N. (2014). Bioelectricity production from municipal leachate in a microbial fuel cell: effect of two cathodic catalysts. International Journal of Hydrogen Energy, 39(29), 16667-16675, https://doi.org/10.1016/j.ijhydene.2014.05.178
Vázquez-Larios A. L., Poggi-Varaldo H. M., Solorza-Feria O. and Rinderknecht-Seijas N. (2015). Effect of type of inoculum on microbial fuel cell performance that used RuxMoySez as cathodic catalyst. International Journal of Hydrogen Energy, 40(48), 17402-17412, https://doi.org/10.1016/j.ijhydene.2015.09.143
Vilajeliu-Pons A., Koch C., Balaguer M. D., Colprim J., Harnisch F. and Puig S. (2018). Microbial electricity driven anoxic ammonium removal. Water Research, 130, 168-175, https://doi.org/10.1016/j.watres.2017.11.059
Virdis B., Rabaey K., Rozendal R. A., Yuan Z. and Keller J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 44(9), 2970-2980, https://doi.org/10.1016/j.watres.2010.02.022
Wang Z. J. and Lim B. S. (2017). Electric power generation from treatment of food waste leachate using microbial fuel cell. Environmental Engineering Research, 22(2), 157-161, https://doi.org/10.4491/eer.2016.061
Wang H. and Ren Z. J. (2014). Bioelectrochemical metal recovery from wastewater: a review. Water Research, 66, 219-232, https://doi.org/10.1016/j.watres.2014.08.013
Warmadewanthi I., Zulkarnain M. A., Ikhlas N., Kurniawan S. B. and Abdullah S. R. S. (2021). Struvite precipitation as pretreatment method of mature landfill leachate. Bioresource Technology Reports, 15, 100792, https://doi.org/10.1016/j. biteb.2021.100792
Wu D., Wang T., Huang X., Dolfing J. and Xie B. (2015). Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies. Applied Microbiology and Biotechnology, 99(19), 7827-7836, https://doi.org/10.1007/s00253-015-6857-x
Xia C., Zhang D., Pedrycz W., Zhu Y. and Guo Y. (2018). Models for microbial fuel cells: a critical review. Journal of Power Sources, 373, 119-131, https://doi.org/10.1016/j. jpowsour.2017.11.001
Ye Y., Ngo H. H., Guo W., Liu Y., Chang S. W., Nguyen D. D., Ren J., Liu Y. and Zhang X. (2019). Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater. Chemical Engineering Journal, 358, 236-242, https://doi.org/10.1016/j.cej.2018.09.215
You S. J., Zhao Q. L., Jiang J. Q., Zhang J. N. and Zhao S. Q. (2006). Sustainable approach for leachatetreatment:electricitygenerationinmicrobialfuelcell.JournalofEnvironmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2721-2734, https://doi.org/10.1080/10934520600966284
Yuan H. and He Z. (2015). Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. Microbial Fuel Cells, 195, 202-209, https://doi. org/10.1016/j.biortech.2015.05.058
Zhang J. N., Zhao Q. L., You S. J., Jiang J. Q. and Ren N. Q. (2008). Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Science and Technology, 57(7), 1017-1021, https://doi.org/10.2166/wst.2008.063
Zhang G., Jiao Y. and Lee D.-J. (2015a). A lab-scale anoxic/oxic-bioelectrochemical reactor for leachate treatments. Bioresource Technology, 186, 97-105, https://doi. org/10.1016/j.biortech.2015.03.022
Zhang G., Jiao Y. and Lee D.-J. (2015b). Transformation of dissolved organic matters in landfill leachate-bioelectrochemical system. Bioresource Technology, 191, 350-354, https://doi.org/10.1016/j.biortech.2015.05.082
Zhang G., Jiao Y. and Lee D.-J. (2016). Leachate treatment using anoxic/oxic- bioelectrochemical reactor with intermittent aeration. Journal of theTaiwan Institute of Chemical Engineers, 58, 401-406, https://doi.org/10.1016/j.jtice.2015.06.019
Zhao S., Zou L., Tang C. Y. and Mulcahy D. (2012). Recent developments in forward osmosis: opportunities and challenges. Journal of Membrane Science, 396, 1-21, https://doi.org/10.1016/j.memsci.2011.12.023
Zou S., Guan L., Taylor D. P., Kuhn D. and He Z. (2018). Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquaculture, 497, 74-81, https://doi.org/10.1016/j.aquaculture.2018.07.036