[en] Microbial electrochemical technologies (METs) are rapidly evolving as a form of sustainable source for power generation, synthesis of various products used as biofuel, wastewater treatment, and bioremediation of complex waste to meet challenges of current era. However, there are challenges and limitations in scaling up the applications of METs, and multiple efforts aimed at practical implementation serve as crucial milestones on the path to its commercialization. Therefore this chapter will focus on the chronological development of various METs, including their commonly employed designs and configurations that hold potential for successful scaling up. Moreover, it will highlight essential performance parameters that must be considered when scaling up METs, including voltametric treatment rate, Coulombic efficiency, net energy recovery, life cycle analysis, capital cost, current density, and technology readiness level. Lastly, we will explore the current status of METs in relation to their suitability for commercial applications, alongside the scalability challenges that must be taken into account during the scaling up.
Disciplines :
Civil engineering
Author, co-author :
MITTAL, Yamini ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Ingenieurgesellschaft Janisch & Schulz mbH, Münzenberg, Germany ; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
Ul, Zainab; GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
Saquib, Syed; Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Bandung, Indonesia
Gupta, Supriya; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
Saeed, Tanveer; Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
Imteaz, Monzur A.; Department of Civil and Construction Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Melbourne, Australia
Yadav, Asheesh Kumar; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India ; Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
External co-authors :
yes
Language :
English
Title :
Challenges in up-scaling of microbial electrochemical technologies for practical environmental applications
Publication date :
2024
Main work title :
Emerging Trends and Advances in Microbial Electrochemical Technologies: Hypothesis, Design, Operation, and Applications
Abdallah, M., Feroz, S., Alani, S., Sayed, E.T., Shanableh, A., 2019. Continuous and scalable applications of microbial fuel cells: A critical review. Reviews in Environmental Science and Biotechnology. 18 https://doi.org/10.1007/s11157-019-09508-x
Aguirre-Sierra, A., Bacchetti-De Gregoris, T., Berná, A., Salas, J.J., Aragón, C., Esteve-Núñez, A., 2016. Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater. Environmental Science (Camb) 2. https://doi.org/10.1039/c6ew00172f
Arredondo, M.R., Kuntke, P., Ter Heijne, A., Hamelers, H.V.M., Buisman, C.J.N., 2017. Load ratio determines the ammonia recovery and energy input of an electrochemical system. Water Research 111, 330-337.
Asensio, Y., Mansilla, E., Fernandez-Marchante, C.M., Lobato, J., Cañizares, P., Rodrigo, M.A., 2017. Towards the scale-up of bioelectrogenic technology: Stacking microbial fuel cells to produce larger amounts of electricity. J Appl Electrochem 47, 1115-1125. https://doi.org/10.1007/s10800-017-1101-2
Babauta, J.T., Kerber, M., Hsu, L., Phipps, A., Chadwick, D.B., Arias-Thode, Y.M., 2018. Scaling up benthic microbial fuel cells using flyback converters. Journal of Power Sources 395, 98-105. https://doi.org/10.1016/J.JPOWSOUR.2018.05.042
Baeza, J.A., Martínez-Miró, À., Guerrero, J., Ruiz, Y., Guisasola, A., 2017. Bioelectrochemical hydrogen production from urban wastewater on a pilot scale. Journal of Power Sources 356, 500-509.
Aquacycl. BETT wastewater treatment to reduce BOD | [WWW Document]. (2018). Available from https://aquacycl.com/bett/ Accessed 10.2.23.
Bird, H., Heidrich, E.S., Leicester, D.D., Theodosiou, P., 2022. Pilot-scale microbial fuel cells (MFCs): A meta-analysis study to inform full-scale design principles for optimum wastewater treatment. Journal of Cleaner Production 346, 131227.
Blatter, M., Delabays, L., Furrer, C., Huguenin, G., Cachelin, C.P., Fischer, F., 2021. Stretched 1000-L microbial fuel cell. Journal of Power Sources 483. https://doi.org/10.1016/j.jpowsour.2020.229130
Brown, R.K., Harnisch, F., Wirth, S., Wahlandt, H., Dockhorn, T., Dichtl, N., Schröder, U., 2014. Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresource Technology 163, 206-213.
Butti, S.K., Velvizhi, G., Sulonen, M.L.K., Haavisto, J.M., Oguz Koroglu, E., Yusuf Cetinkaya, A., Singh, S., Arya, D., Annie Modestra, J., Vamsi Krishna, K., Verma, A., Ozkaya, B., Lakaniemi, A.M., Puhakka, J.A., Venkata Mohan, S., 2016. Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling. Renewable and Sustainable Energy Reviews 53, 462-476. https://doi.org/10.1016/J.RSER.2015.08.058
Call, D., Logan, B.E., 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science & Technology 42, 3401-3406.
Cambrian. Wastewater treatment systems and services. [WWW Document]. (2021). Available from https://www.cambrianinnovation.com/ Accessed 10.2.23.
Cerrillo, M., Viñas, M., Bonmatí, A., 2018. Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane. Renewable Energy 120, 178-189.
Chen, J., Xu, W., Wu, X., Jiaqiang, E., Lu, N., Wang, T., Zuo, H., 2019. System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater. Energy Conversion and Management 193, 52-63.
Chen, X., Liang, P., Wei, Z., Zhang, X., Huang, X., 2012. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation. Bioresource Technology 119, 88-93.
Clauwaert, P., Aelterman, P., Pham, T.H., De Schamphelaire, L., Carballa, M., Rabaey, K., Verstraete, W., 2008. Minimizing losses in bio-electrochemical systems: The road to applications. Applied Microbiology and Biotechnology https://doi.org/10.1007/s00253-008-1522-2
Clauwaert, P., Mulenga, S., Aelterman, P., Verstraete, W., 2009. Litre-scale microbial fuel cells operated in a complete loop. Applied Microbiology and Biotechnology 83. https://doi.org/10.1007/s00253-009-1876-0
Colombo, A., Marzorati, S., Lucchini, G., Cristiani, P., Pant, D., Schievano, A., 2017. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. Bioresource Technology 237, 240-248. https://doi.org/10.1016/j.biortech.2017.03.038
Cotterill, S.E., Dolfing, J., Jones, C., Curtis, T.P., Heidrich, E.S., 2017. Low temperature domestic wastewater treatment in a microbial electrolysis cell with 1 m2 anodes: Towards system scale-up. Fuel Cells 17, 584-592.
Cristiani, L., Zeppilli, M., Villano, M., Majone, M., 2021. Role of the organic loading rate and the electrodes’ potential control strategy on the performance of a micro pilot tubular microbial electrolysis cell for biogas upgrading. Chemical Engineering Journal 426, 131909.
Cusick, R.D., Bryan, B., Parker, D.S., Merrill, M.D., Mehanna, M., Kiely, P.D., Liu, G., Logan, B.E., 2011. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Applied Microbiology and Biotechnology 89, 2053-2063.
Das, I., Ghangrekar, M.M., Satyakam, R., Srivastava, P., Khan, S., Pandey, H.N., 2020. On-site sanitary wastewater treatment system using 720-L stacked microbial fuel cell: Case study. Journal of Hazardous, Toxic, and Radioactive Waste 24. https://doi.org/10.1061/(asce)hz.2153-5515.0000518
Das, S., Raj, R., Das, S., Ghangrekar, M.M., 2021. A sustainable approach for the production of green energy with the holistic treatment of wastewater through microbial electrochemical technologies: A review. Frontiers in Sustainability 2, 792028.
Dekker, A., Ter Heijne, A., Saakes, M., Hamelers, H.V.M., Buisman, C.J.N., 2009. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environmental Science & Technology 43. https://doi.org/10.1021/es901939r
Doherty, L., Zhao, X., Zhao, Y., Wang, W., 2015. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland. Ecological Engineering 79. https://doi.org/10.1016/j.ecoleng.2015.03.004
Electrochaea. Electrochaea GmbH - Power-to-gas energy storage | [WWW Document]. (2021). Available from https://www.electrochaea.com/ Accessed 10.2.23.
Fluence Corporation. Emefcy and RWL water merge to create fluence [WWW Document]. (2010). Available from https://www.fluencecorp.com/emefcy-and-rwl-water-merge-to-create-fluence/ Accessed 10.2.23.
e-Soil. e-Soil | electroactive artificial soil for soil-less agriculture [WWW Document]. (2019). Available from https://www.e-soil.net/ Accessed 10.2.23.
Fang, Z., Cheng, S., Cao, X., Wang, H., Li, X., 2017. Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland. Environmental Technology (United Kingdom) 38. https://doi.org/10.1080/09593330.2016.1217280
Fruehauf, H.M., Enzmann, F., Harnisch, F., Ulber, R., Holtmann, D., 2020. Microbial electrosynthesis—An inventory on technology readiness level and performance of different process variants. Biotechnology Journal 15, 2000066.
Ballard Power. Fuel cell & clean energy solutions | [WWW Document]. (1979). Available from https://www.ballard.com/ Accessed 10.2.23.
Ge, Z., He, Z., 2016. Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: Treatment, energy, and cost. Environmental Science (Camb) 2. https://doi.org/10.1039/c6ew00020g
Ge, Z., Li, J., Xiao, L., Tong, Y., He, Z., 2014. Recovery of electrical energy in microbial fuel cells: Brief review. Environmental Science & Technology Letters 1, 137-141.
Ghadge, A.N., Ghangrekar, M.M., 2015. Performance of low cost scalable air-cathode microbial fuel cell made from clayware separator using multiple electrodes. Bioresource Technology 182. https://doi.org/10.1016/j.biortech.2015.01.115
Ghadge, A.N., Jadhav, D.A., Ghangrekar, M.M., 2016. Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications. Environmental Progress & Sustainable Energy 35. https://doi.org/10.1002/ep.12403
Gujjala, L.K.S., Dutta, D., Sharma, P., Kundu, D., Vo, D.-V.N., Kumar, S., 2022. A state-of-the-art review on microbial desalination cells. Chemosphere 288, 132386.
Gupta, S., Nayak, A., Roy, C., Yadav, A.K., 2021. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production. Chemosphere 263. https://doi.org/10.1016/j.chemosphere.2020.128132
Gupta, S., Patro, A., Mittal, Y., Dwivedi, S., Saket, P., Panja, R., Saeed, T., Martínez, F., Yadav, A.K., 2023. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. Science of The Total Environment 162757. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162757
Haas, T., Krause, R., Weber, R., Demler, M., Schmid, G., 2018. Technical photosynthesis involving CO2 electrolysis and fermentation. Nature Catalysis 1, 32-39.
He, W., Wallack, M.J., Kim, K.-Y., Zhang, X., Yang, W., Zhu, X., Feng, Y., Logan, B.E., 2016a. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant. Water Research 105, 351-360.
He, W., Zhang, X., Liu, J., Zhu, X., Feng, Y., Logan, B.E., 2016b. Microbial fuel cells with an integrated spacer and separate anode and cathode modules. Environmental Science (Camb) 2. https://doi.org/10.1039/c5ew00223k
He, Z. (2013). Microbial fuel cells: now let us talk about energy. Environmental Science & Technology. 47.
Heidrich, E.S., Dolfing, J., Scott, K., Edwards, S.R., Jones, C., Curtis, T.P., 2013. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Applied Microbiology and Biotechnology 97, 6979-6989.
Heidrich, E.S., Edwards, S.R., Dolfing, J., Cotterill, S.E., Curtis, T.P., 2014. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresource Technology 173, 87-95.
Hernandez, C.A., Osma, J.F., 2020. Microbial electrochemical systems: Deriving future trends from historical perspectives and characterization strategies. Frontiers in Environmental Science 8, 44.
Ieropoulos, I., Greenman, J., Melhuish, C., 2008. Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research 32. https://doi.org/10.1002/er.1419
Ieropoulos, I.A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., Sanchez-Herranz, D., Greenman, J., 2016. Pee power urinal-microbial fuel cell technology field trials in the context of sanitation. Environmental Science (Camb) 2. https://doi.org/10.1039/c5ew00270b
Inhabitat. Harvard scientists create dirt powered bacteria batteries [WWW Document]. (2008). Available from https://inhabitat.com/harvard-scientists-create-dirt-powered-bacteria-batteries/ Accessed 10.2.23.
Jacobson, K.S., Drew, D.M., He, Z., 2011. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environmental Science & Technology 45, 4652-4657.
Jadhav, D.A., Chendake, A.D., 2019. Advance microbial fuel cell for waste to energy recovery: Need of future era for sustainable development: Microbial fuel cell (MFC) and advancement in MFC research. International Journal of Alternative Fuels and Energy 3, 22-24.
Jadhav, D.A., Ghangrekar, M.M., Duteanu, N., 2018. Recent progress towards scaling up of MFCs, in: Das, D. (Ed.), Microbial fuel cell: A bioelectrochemical system that converts waste to watts. Springer International Publishing, Cham, pp. 443-457. https://doi.org/10.1007/978-3-319-66793-5_23
Jadhav, D.A., Pandit, S., Sonawane, J.M., Gupta, P.K., Prasad, R., Chendake, A.D., 2021. Effect of membrane biofouling on the performance of microbial electrochemical cells and mitigation strategies. Bioresource Technology Reports 15, 100822. https://doi.org/10.1016/J.BITEB.2021.100822
Jadhav, D.A., Chendake, A.D., Vinayak, V., Atabani, A., Abdelkareem, M.A., Chae, K.-J., 2022. Scale-up of the bioelectrochemical system: Strategic perspectives and normalization of performance indices. Bioresource Technology 127935.
Jadhav, D.A., Das, I., Ghangrekar, M.M., Pant, D., 2020. Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. Journal of Water Process Engineering 38, 101566. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101566
Jadhav, D.A., Park, S.-G., Pandit, S., Yang, E., Abdelkareem, M.A., Jang, J.-K., Chae, K.-J., 2022. Scalability of microbial electrochemical technologies: Applications and challenges. Bioresource Technology 345, 126498.
Jayapriya, J., & Gummadi, S. N. (2022). Scaling up and applications of microbial fuel cells. In Scaling Up of Microbial Electrochemical Systems, (pp. 309-338). Elsevier.
Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D., Li, B., 2011. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy 36. https://doi.org/10.1016/j.ijhydene.2010.08.074
Katuri, K.P., Werner, C.M., Jimenez-Sandoval, R.J., Chen, W., Jeon, S., Logan, B.E., Lai, Z., Amy, G.L., Saikaly, P.E., 2014. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environmental Science & Technology 48, 12833-12841.
Kim, D., An, J., Kim, B., Jang, J.K., Kim, B.H., Chang, I.S., 2012. Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte. ChemSusChem 5, 1086-1091.
Klöpffer, W., 2014. Background and future prospects in life cycle assessment. Springer Science & Business Media.
Kokabian, B., Ghimire, U., Gude, V.G., 2018. Water deionization with renewable energy production in microalgae-microbial desalination process. Renew Energy 122, 354-361.
Krieg, T., Sydow, A., Schröder, U., Schrader, J., Holtmann, D., 2014. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends in Biotechnology 32, 645-655.
Kyazze, G., Popov, A., Dinsdale, R., Esteves, S., Hawkes, F., Premier, G., Guwy, A., 2010. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. International Journal of Hydrogen Energy 35, 7716-7722.
Lee, H.-S., Rittmann, B.E., 2010. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Environmental Science & Technology 44, 948-954.
Lee, H.-S., Torres, C.I., Parameswaran, P., Rittmann, B.E., 2009. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environmental Science & Technology 43, 7971-7976.
Leicester, D., Amezaga, J., Heidrich, E., 2020. Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells. Renewable and Sustainable Energy Reviews 133, 110279. https://doi.org/https://doi.org/10.1016/j.rser.2020.110279
Leicester, D.D., Amezaga, J.M., Moore, A., Heidrich, E.S., 2020. Optimising the hydraulic retention time in a pilot-scale microbial electrolysis cell to achieve high volumetric treatment rates using concentrated domestic wastewater. Molecules (Basel, Switzerland) 25, 2945.
Liang, D.-W., Peng, S.-K., Lu, S.-F., Liu, Y.-Y., Lan, F., Xiang, Y., 2011. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization. Bioresource Technology 102, 10881-10885.
Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., Huang, X., 2018. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research 141. https://doi.org/10.1016/j.watres.2018.04.066
Liu, H., Grot, S., Logan, B.E., 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology 39, 4317-4320.
Liu, S., Lu, F., Qiu, D., Feng, X., 2022. Wetland plants selection and electrode optimization for constructed wetland-microbial fuel cell treatment of Cr(VI)-containing wastewater. Journal of Water Process Engineering 49. https://doi.org/10.1016/j.jwpe.2022.103040
Logan, B.E., 2008. Microbial fuel cells. John Wiley & Sons.
Lu, M., Chen, S., Babanova, S., Phadke, S., Salvacion, M., Mirhosseini, A., Chan, S., Carpenter, K., Cortese, R., Bretschger, O., 2017. Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater. Journal of Power Sources 356. https://doi.org/10.1016/j.jpowsour.2017.03.132
Mathuriya, A.S., Jadhav, D.A., Ghangrekar, M.M., 2018. Architectural adaptations of microbial fuel cells. Applied Microbiology and Biotechnology 102, 9419-9432. https://doi.org/10.1007/s00253-018-9339-0
Min, B., Kim, J.R., Oh, S.E., Regan, J.M., Logan, B.E., 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Research 39. https://doi.org/10.1016/j.watres.2005.09.039
Min, B., Logan, B.E., 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology 38, 5809-5814.
Mirzaienia, F., Asadipour, A., Jafari, A.J., Malakootian, M., 2017. Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell. Applied Water Science 7, 3617-3624.
Mittal, Y., Dash, S., Srivastava, P., Mishra, P.M., Aminabhavi, T.M., Yadav, A.K., 2022. Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: A new design for enhanced performance. Chemical Engineering Journal 427. https://doi.org/10.1016/j.cej.2021.131856
Mittal, Y., Dwivedi, S., Gupta, S., Panja, R., Saket, P., Patro, A., Saeed, T., Martínez, F., & Yadav, A. K. (2023). Progressive Transformation of Microbial Fuel Cells (MFC s) to Sediment MFC s, Plant MFC s, and Constructed Wetland Integrated MFC s. Microbial Electrochemical Technologies. Fundamentals and Applications, 2, 407-444.
Mittal, Y., Noori, M. T., Saeed, T., & Yadav, A. K. (2023). Influence of evapotranspiration on wastewater treatment and electricity generation performance of constructed wetland integrated microbial fuel cell. Journal of Water Process Engineering, 53, 103580.
Mittal, Y., Srivastava, P., Kumar, N., Kumar, M., Singh, S. K., Martinez, F., & Yadav, A. K. (2023). Ultra-fast and low-cost electroactive biochar production for electroactive-constructed wetland applications: A circular concept for plant biomass utilization. Chemical Engineering Journal, 452, 138587.
Morel, A., Zuo, K., Xia, X., Wei, J., Luo, X., Liang, P., Huang, X., 2012. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Bioresource Technology 118, 43-48.
Nam, J.-Y., Kim, H.-W., Lim, K.-H., Shin, H.-S., 2010. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresource Technology 101, S33-S37.
Nath, D., Chakraborty, I., Ghangrekar, M.M., 2021. Integrating microbial electrochemical technologies for methane-to-bioelectricity and water-splitting to impart self-sustainability to wastewater treatment plants. Bioresource Technology Reports 13, 100644. https://doi.org/10.1016/J.BITEB.2021.100644
Oliveira, V.B., Simões, M., Melo, L.F., Pinto, A.M.F.R., 2013. Overview on the developments of microbial fuel cells. Biochemical Engineering Journal https://doi.org/10.1016/j.bej.2013.01.012
Pant, D., Singh, A., Van Bogaert, G., Olsen, S.I., Nigam, P.S., Diels, L., Vanbroekhoven, K., 2012. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances 2, 1248-1263.
Priyadarshini, M., Ahmad, A., Das, S., Ghangrekar, M.M., 2021. Application of microbial electrochemical technologies for the treatment of petrochemical wastewater with concomitant valuable recovery: A review. Environmental Science and Pollution Research 1-20.
Ramírez-Vargas, C. A., Arias, C. A., Zhang, L., & Brix, H. (2018). Microbial community function in electroactive biofilm-based constructed wetlands. Biogeosciences Discussions, 2018, 1-28.
Prévoteau, A., Carvajal-Arroyo, J.M., Ganigué, R., Rabaey, K., 2020. Microbial electrosynthesis from CO2: Forever a promise? Current Opinion in Biotechnology 62, 48-57.
Raychaudhuri, A., Gurjar, R., Bagchi, S., Behera, M., 2022. Application of microbial electrochemical system for industrial wastewater treatment, in: Scaling up of microbial electrochemical systems. Elsevier, pp. 195-215.
MICROrganic Technologies. Revolutionize your wastewater treatment with VIVA TM MFC. [WWW Document]. (2019). https://microrganictech.com/ Accessed 10.2.23.
Rosa, L.F.M., Hunger, S., Zschernitz, T., Strehlitz, B., Harnisch, F., 2019. Integrating electrochemistry into bioreactors: Effect of the upgrade kit on mass transfer, mixing time and sterilizability. Frontiers in Energy Research 7, 98.
De Rose, A., Buna, M., Strazza, C., Olivieri, N., Stevens, T., Peeters, L., Tawil-Jamault, D., 2017. Technology readiness level: Guidance principles for renewable energy technologies. European Commission: Petten, The Netherlands 17-27.
Rousseau, R., Etcheverry, L., Roubaud, E., Basséguy, R., Délia, M.-L., Bergel, A., 2020. Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint. Applied Energy 257, 113938.
Roy, M., Aryal, N., Zhang, Y., Patil, S.A., Pant, D., 2022. Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization. Current Opinion in Green and Sustainable Chemistry 35, 100605.
Rozendal, R.A., Hamelers, H.V.M., Euverink, G.J.W., Metz, S.J., Buisman, C.J.N., 2006. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy 31, 1632-1640.
Saeed, H.M., Husseini, G.A., Yousef, S., Saif, J., Al-Asheh, S., Fara, A.A., Azzam, S., Khawaga, R., Aidan, A., 2015. Microbial desalination cell technology: A review and a case study. Desalination 359, 1-13.
Saeed, Tanveer, Yadav, Asheesh Kumar, & Miah, Md Jihad (2022) (In this issue). Landfill leachate and municipal wastewater co-treatment in microbial fuel cell integrated unsaturated and partially saturated tidal flow constructed wetlands. Journal of Water Process Engineering, Article 102633. https://doi.org/10.1016/j.jwpe.2022.102633.
Saket, P., Mittal, Y., Bala, K., Joshi, A., Kumar Yadav, A., 2022. Innovative constructed wetland coupled with microbial fuel cell for enhancing diazo dye degradation with simultaneous electricity generation. Bioresource Technology. 345. https://doi.org/10.1016/j.biortech.2021.126490
Savla, N., Pandit, S., Verma, J.P., Awasthi, A.K., Sana, S.S., Prasad, R., 2021. Techno-economical evaluation and life cycle assessment of microbial electrochemical systems: A review. Current Research in Green and Sustainable Chemistry (Weinheim an der Bergstrasse, Germany) 4, 100111.
Seelam, J.S., Rundel, C.T., Boghani, H.C., Mohanakrishna, G., 2018. Scaling up of MFCs: Challenges and case studies, in: Das, D. (Ed.), Microbial fuel cell: A bioelectrochemical system that converts waste to watts. Springer International Publishing, Cham, pp. 459-481. https://doi.org/10.1007/978-3-319-66793-5_24
Sevda, S., Yuan, H., He, Z., Abu-Reesh, I.M., 2015. Microbial desalination cells as a versatile technology: functions, optimization and prospective. Desalination 371, 9-17.
Sharma, M., Bajracharya, S., Gildemyn, S., Patil, S.A., Alvarez-Gallego, Y., Pant, D., Rabaey, K., Dominguez-Benetton, X., 2014. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochimica Acta 140, 191-208.
Shimoyama, T., Komukai, S., Yamazawa, A., Ueno, Y., Logan, B.E., Watanabe, K., 2008. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Applied Microbiology and Biotechnology. 80. https://doi.org/10.1007/s00253-008-1516-0
Sim, J., Reid, R., Hussain, A., An, J., Lee, H.-S., 2018. Hydrogen peroxide production in a pilot-scale microbial electrolysis cell. Biotechnology Reports 19, e00276.
Sleutels, T.H.J.A., Darus, L., Hamelers, H.V.M., Buisman, C.J.N., 2011. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Bioresource Technology 102, 11172-11176.
Srivastava, P., Abbassi, R., Yadav, A.K., Garaniya, V., Asadnia, M., 2020. A review on the contribution of electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment. Chemosphere 254, 126926.
Srivastava, P., Abbassi, R., Yadav, A., Garaniya, V., Asadnia, M., Lewis, T., Khan, S.J., 2021. Influence of applied potential on treatment performance and clogging behaviour of hybrid constructed wetland-microbial electrochemical technologies. Chemosphere 284. https://doi.org/10.1016/j.chemosphere.2021.131296
Srivastava, Pratiksha, Abbassi, Rouzbeh, Yadav, Asheesh Kumar, Garaniya, Vikram, Lewis, Trevor, Zhao, Yaqian, & Aminabhavi, Tejraj, et al. (2021) (In this issue). Interrelation between sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands. Journal of Hazardous Materials, Article 126417. https://doi.org/10.1016/j.jhazmat.2021.126417.
Srivastava, Pratiksha, Belford, Andrew, Abbassi, Rouzbeh, Asadnia, Mohsen, Garaniya, Vikram, & Yadav, Asheesh Kumar (2021) (In this issue). Low-power energy harvester from constructed wetland-microbial fuel cells for initiating a self-sustainable treatment process. Sustainable Energy Technologies and Assessments, Article 101282. https://doi.org/10.1016/j.seta.2021.101282.
Srivastava, P., Yadav, A.K., Mishra, B.K., 2015. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresource Technology 195. https://doi.org/10.1016/j.biortech.2015.05.072
Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N., 2008. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Research 42, 4059-4066.
Walter, X.A., Gajda, I., Forbes, S., Winfield, J., Greenman, J., Ieropoulos, I., 2016. Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnology for Biofuels 9, 1-11.
Wang, L., Long, F., Liang, D., Xiao, X., Liu, H., 2021. Hydrogen production from lignocellulosic hydrolysate in an up-scaled microbial electrolysis cell with stacked bio-electrodes. Bioresource Technology 320, 124314.
Wang, Y., Xu, A., Cui, T., Zhang, J., Yu, H., Han, W., Shen, J., Li, J., Sun, X., Wang, L., 2020. Construction and application of a 1-liter upflow-stacked microbial desalination cell. Chemosphere 248, 126028.
Xiao, L., Ge, Z., Kelly, P., Zhang, F., He, Z., 2014. Evaluation of normalized energy recovery (NER) in microbial fuel cells affected by reactor dimensions and substrates. Bioresource Technology 157, 77-83.
Xu, L., Zhao, Y., Doherty, L., Hu, Y., Hao, X., 2016. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber. Scintific Reports 6. https://doi.org/10.1038/srep26514
Yadav, R.K., Das, S., Patil, S.A., 2022. Are integrated bioelectrochemical technologies feasible for wastewater management? Trends in Biotechnology https://doi.org/10.1016/j.tibtech.2022.09.001
Yu, B., Liu, C., Wang, S., Wang, W., Zhao, S., Zhu, G., 2020. Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature. Science of the Total Environment 724. https://doi.org/10.1016/j.scitotenv.2020.138017
Zhang, F., Ge, Z., Grimaud, J., Hurst, J., He, Z., 2013a. In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresource Technology 136. https://doi.org/10.1016/j.biortech.2013.02.107
Zhang, F., Ge, Z., Grimaud, J., Hurst, J., He, Z., 2013b. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environmental Science & Technology 47. https://doi.org/10.1021/es400631r
Zhang, F., He, Z., 2015. Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination. Desalination 360, 28-34.
Zhang, P.Y., Liu, Z.L., 2010. Experimental study of the microbial fuel cell internal resistance. Journal of Power Sources 195, 8013-8018. https://doi.org/10.1016/J.JPOWSOUR.2010.06.062
Zhang, Q., Liu, L., 2021. Cathodes of membrane and packed manganese dioxide/titanium dioxide/graphitic carbon nitride/granular activated carbon promoted treatment of coking wastewater in microbial fuel cell. Bioresource Technology 321, 124442.
Zhang, Y., & Angelidaki, I., 2016. Microbial electrochemical systems and technologies: It is time to report the capital costs. Environmental Science and Technology. 50.
Zuo, K., Cai, J., Liang, S., Wu, S., Zhang, C., Liang, P., Huang, X., 2014. A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination. Environmental Science & Technology 48, 9917-9924.
Zuo, K., Chang, J., Liu, F., Zhang, X., Liang, P., Huang, X., 2017. Enhanced organics removal and partial desalination of high strength industrial wastewater with a multi-stage microbial desalination cell. Desalination 423, 104-110.