electrochemical characterization; extracellular electron transfer; Microbial electrochemical technologies; microbial fuel cells; Engineering (all); Chemical Engineering (all)
Abstract :
[en] Microbial electrochemical technologies (METs) are a set of sustainable technologies to address various environmental and energy-related challenges. To date, various types of METs, such as microbial fuel, microbial desalination, and microbial electrolysis cells (MECs), have been developed for specific applications, which have further been modified with innovative configurations, designs, and operating conditions to enhance their performance. Nevertheless, addressing fundamental challenges and gaining a deeper understanding are crucial for advancing these technologies in practical applications. In this context, researchers have made great efforts to discover the underlying mechanisms in METs by using numerous bioelectrochemical characterization techniques. This chapter discusses different METs and their electron flow conventions with distinct extracellular electron transfer mechanisms to develop an understanding of their fundamental processes and mechanisms. Subsequently, the chapter also discusses the characterization techniques according to different types of interaction and resolution levels. It also discusses a range of microbial and electrochemical characterization methods, including their current utilization status.
Disciplines :
Civil engineering
Author, co-author :
MITTAL, Yamini ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Ingenieurgesellschaft Janisch & Schulz mbH, Münzenberg, Germany
Gautam, Rahul; Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, India
Das, Indrasis; Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, India ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
Patro, Ashmita; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India ; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
Noori, Md Tabish; Department of Environmental Science and Engineering, Kyung Hee University-Global Campus, South Korea ; Department of Chemical Engineering, Imperial College London, South Kensington, United Kingdom
Srivastava, Pratiksha; Department of Chemical Engineering, The University of Melbourne, Parkville, Australia
Martinez, Fernando; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Spain
Yadav, Asheesh Kumar; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India ; Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
External co-authors :
yes
Language :
English
Title :
Bioelectrochemical characterization techniques for enhanced understanding of microbial electrochemical technologies
Publication date :
2024
Main work title :
Emerging Trends and Advances in Microbial Electrochemical Technologies: Hypothesis, Design, Operation, and Applications
M. Alhede, K. Qvortrup, R. Liebrechts, N. Høiby, M. Givskov, T. Bjarnsholt, Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition, FEMS Immunology and Medical Microbiology 65 (2012) 335-342. https://doi.org/10.1111/j.1574-695X.2012.00956.x.
G.D. Bhowmick, M.T. Noori, I. Das, B. Neethu, M.M. Ghangrekar, A. Mitra, Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell, International Journal of Hydrogen Energy 43 (2018) 7501-7510. https://doi.org/10.1016/j.ijhydene.2018.020.188.
L. Caizán-Juanarena, J.R. Krug, F.J. Vergeldt, J.M. Kleijn, A.H. Velders, H. Van As, A. Ter Heijne, 3D Biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging, Water Research 167 (2019). https://doi.org/10.1016/j.watres.2019.115059.
A. Cambré, A. Aertsen, Bacterial vivisection: How fluorescence-based imaging techniques shed a light on the inner workings of bacteria, Microbiology and Molecular Biology Reviews. 84 (2020) 1-76. https://doi.org/10.1128/mmbr.00008-20.
A. Canette, R. Briandet, Microscopy: Confocal laser scanning microscopy (2nd ed.). Elsevier. 2014. https://doi.org/10.1016/B978-0-12-384730-0.00214-7.
D.X. Cao, H. Yan, V.V. Brus, M.S. Wong, G.C. Bazan, T.-Q. Nguyen, Visualization of charge transfer from bacteria to a self-doped conjugated polymer electrode surface using conductive atomic force microscopy, ACS Applied Mater Interfaces. 12 (2020) 40778-40785.
I. Chakraborty, D. Ghosh, S.M. Sathe, B.K. Dubey, D. Pradhan, M.M. Ghangrekar, Investigating the efficacy of CeO2 multi-layered triangular nanosheets for augmenting cathodic hydrogen peroxide production in microbial fuel cell, Electrochimica Acta 398 (2021) 139341. https://doi.org/https://doi.org/10.1016/j.electacta.2021.139341.
S. Chatterjee, N. Biswas, A. Datta, R. Dey, P. Maiti, Atomic force microscopy in biofilm study, Microscopy: The Journal of the Quekett Microscopical Club 63 (2014) 269-278. https://doi.org/10.1093/jmicro/dfu013.
S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology 21 (2003) 1229-1232.
T.H. Choi, Y.-B. Won, J.-W. Lee, D.W. Shin, Y.M. Lee, M. Kim, H.B. Park, Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes, Journal of Power Sources. 220 (2012) 269-279. https://doi.org/https://doi.org/10.1016/j.jpowsour.2012.070.109.
M. Christwardana, D. Frattini, G. Accardo, S.P. Yoon, Y. Kwon, Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst, Applied Energy. 222 (2018) 369-382.
J.E. Clarridge, Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases, Clinical Microbiology Reviews 17 (2004) 840-862. https://doi.org/10.1128/CMR.17.4.840-862.2004.
I. Das, S. Das, S. Das, M.M. Ghangrekar, Proficient sanitary wastewater treatment in laboratory and field-scale microbial fuel cell with anti-biofouling Cu00.5MnO0.5Fe2O4 as cathode catalyst, Journal of the Electrochemical Society 168 (2021) 054519. https://doi.org/10.1149/1945-7111/abfe77.
I. Das, S. Das, R. Dixit, M.M. Ghangrekar, Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell, Ionics (Kiel) (2020). https://doi.org/10.1007/s11581-020-03472-1.
I. Das, S. Das, M.M. Ghangrekar, Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell, Chemical Physics Letters 751 (2020) 137536. https://doi.org/10.1016/j.cplett.2020.137536.
I. Das, S. Das, S. Sharma, M.M. Ghangrekar, Ameliorated performance of a microbial fuel cell operated with an alkali pre-treated clayware ceramic membrane, International Journal of Hydrogen Energy 45 (2020) 16787-16798. https://doi.org/10.1016/j.ijhydene.2020.040.157.
I. Das, M.T. Noori, G.D. Bhowmick, M.M. Ghangrekar, Synthesis of bimetallic iron ferrite CoO0.5ZnO0.5Fe2O4 as a superior catalyst for oxygen reduction reaction to replace noble metal catalysts in microbial fuel cell, International Journal of Hydrogen Energy 43 (2018) 19196-19205. https://doi.org/10.1016/j.ijhydene.2018.080.113.
A. Fernàndez-Guerra, A. Buchan, X. Mou, E.O. Casamayor, J.M. González, T-RFPred: A nucleotide sequence size prediction tool for microbial community description based on terminal-restriction fragment length polymorphism chromatograms, BMC Microbiology 10 (2010) 1-7.
K. Fricke, F. Harnisch, U. Schröder, On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells, Energy Environ Sci. 1 (2008) 144-147. https://doi.org/10.1039/b802363h.
R. Gautam, J.K. Nayak, N.V. Ress, R. Steinberger-wilckens, U. Kumar, Bio-hydrogen production through microbial electrolysis cell: Structural components and influencing factors, Chemical Engineering Journal. 455 (2023) 140535. https://doi.org/10.1016/j.cej.2022.140535.
R. Gautam, J.K. Nayak, K.N. Talapatra, Amit, U.K. Ghosh, Assessment of different organic substrates for bio-electricity and bio-hydrogen generation in an integrated bioelectrochemical system, Materials Today: Proceedings (2021) 6-10. https://doi.org/10.1016/j.matpr.2021.060.223.
A. Hassan, R.Y., Mekawy, M.M., Ramnani, & P., Mulchandani, Monitoring of microbial cell viability using nanostructured electrodes modified with graphene/alumina nanocomposite, Biosensors and Bioelectronics. 91 (2017) 857-862. https://doi.org/10.1016/j.bios.2017.01.060.
R.Y.A. Hassan, F. Febbraio, S. Andreescu, Microbial electrochemical systems: Principles, construction and biosensing applications, Sensors (Switzerland). 21 (2021) 1-19. https://doi.org/10.3390/s21041279.
Z. He, F. Mansfeld, Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies, Energy & Environmental Science. 2 (2009) 215-219. https://doi.org/10.1039/b814914c.
M.P. Herrling, J. Weisbrodt, C.M. Kirkland, N.H. Williamson, S. Lackner, S.L. Codd, J.D. Seymour, G. Guthausen, H. Horn, NMR investigation of water diffusion in different biofilm structures, Biotechnology and Bioengineering 114 (2017) 2857-2867. https://doi.org/10.1002/bit.26392.
J.S. Johnson, D.J. Spakowicz, B.Y. Hong, L.M. Petersen, P. Demkowicz, L. Chen, S.R. Leopold, B.M. Hanson, H.O. Agresta, M. Gerstein, E. Sodergren, G.M. Weinstock, Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis, Nature Communications. 10 (2019) 1-11. https://doi.org/10.1038/s41467-019-13036-1.
J.H. Jorgensen, M.J. Ferraro, Antimicrobial susceptibility testing: A review of general principles and contemporary practices, Clinical Infectious Diseases. 49 (2009) 1749-1755. https://doi.org/10.1086/647952.
P.D. Kiely, D.F. Call, M.D. Yates, J.M. Regan, B.E. Logan, Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera, Applied Microbiology and Biotechnology 88 (2010) 371-380.
B.H. Kim, T. Ikeda, H.S. Park, H.J. Kim, M.S. Hyun, K. Kano, K. Takagi, H. Tatsumi, Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnology Techniques. 13 (1999) 475-478. https://doi.org/10.1023/A:1008993029309.
M. Kim, J. Chun, 16S rRNA gene-based identification of bacteria and archaea using the EzTaxon server (1st ed.). Elsevier Ltd., 2014. https://doi.org/10.1016/bs.mim.2014.080.001.
C. Koch, S. Günther, A.F. Desta, T. Hübschmann, S. Müller, Cytometric fingerprinting for analyzing microbial intracommunity structure variation and identifying subcommunity function, Nature Protocols 8 (2013) 190-202. https://doi.org/10.1038/nprot.20120.149.
Koch, C. Korth, B., & Harnisch, F. (2020) Minireview microbial ecology-based engineering of microbial electrochemical technologies. Available from https://doi.org/10.1111/1751-7915.12802.
T. Liu, A.V. Nadaraja, J. Friesen, K. Gill, M.I. Lam, D.J. Roberts, Narrow pH tolerance found for a microbial fuel cell treating winery wastewater, Journal of Applied Microbiology 131 (2021) 2280-2293. https://doi.org/10.1111/jam.15102.
B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: Methodology and technology, Environmental Science & Technology 40 (2006) 5181-5192. https://doi.org/10.1021/es0605016.
J. Luo, W. Tian, H. Jin, J. Yang, J. Li, Y. Wang, W. Shen, Y. Ren, M. Zhou, Recent advances in microbial fuel cells: A review on the identification technology, molecular tool and improvement strategy of electricigens, Current Opinion in Electrochemistry 37 (2023) 101187. https://doi.org/10.1016/j.coelec.2022.101187.
N.S. Malvankar, M.T. Tuominen, D.R. Lovley, Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells, Energy & Environmental Science. 5 (2012) 5790-5797.
Markaki, Y., & Harz, H. (2017). Light microscopy methods and protocols. Totowa, New Jersey, United States: Springer Protocols, Humana Press.
C.T. Matos, T.L., da Silva, Using multi-parameter flow cytometry as a novel approach for physiological characterization of bacteria in microbial fuel cells, Process Biochemistry. 48 (2013) 49-57. https://doi.org/https://doi.org/10.1016/j.procbio.2012.110.003.
S.V. Mohan, J.S. Sravan, S.K. Butti, K.V. Krishna, J.A. Modestra, G. Velvizhi, A.N. Kumar, S. Varjani, A. Pandey, Microbial electrochemical technology: Emerging and sustainable platform, biomass, biofuels, biochemicals: Microbial electrochemical technology: Sustainable platform for fuels, Chemicals and Remediation. (2019) 3-18. https://doi.org/10.1016/B978-0-444-64052-9.00001-7.
S.E. Mountcastle, N. Vyas, V.M. Villapun, S.C. Cox, S. Jabbari, R.L. Sammons, R.M. Shelton, A.D. Walmsley, S.A. Kuehne, Biofilm viability checker: An open-source tool for automated biofilm viability analysis from confocal microscopy images, NPJ Biofilms and Microbiomes. 7 (2021) 1-12. https://doi.org/10.1038/s41522-021-00214-7.
National Institute of Open Schooling. (2012). Bacterial identification tests (pp. 122-134). National Institute of Open Schooling.
L.W. Negassa, M. Mohiuddin, G.A. Tiruye, Treatment of brewery industrial wastewater and generation of sustainable bioelectricity by microbial fuel cell inoculated with locally isolated microorganisms, Journal of Water Process Engineering. 41 (2021) 102018.
T.R. Neu, B. Manz, F. Volke, J.J. Dynes, A.P. Hitchcock, J.R. Lawrence, Advanced imaging techniques for assessment of structure, composition and function in biofilm systems, FEMS Microbiology Ecology 72 (2010) 1-21. https://doi.org/10.1111/j.1574-6941.2010.00837.x.
M.T. Noori, G.D. Bhowmick, B.R. Tiwari, I. Das, M.M. Ghangrekar, C.K. Mukherjee, Utilisation of waste medicine wrappers as an efficient low-cost electrode material for microbial fuel cell, Environmental Technology (2018) 1-10. https://doi.org/10.1080/09593330.2018.1526216.
M.T. Noori, G.D. Bhowmick, B.R. Tiwari, O.M. Ghangrekar, M.M. Ghangrekar, C.K. Mukherjee, Carbon supported Cu-Sn bimetallic alloy as an excellent low-cost cathode catalyst for enhancing oxygen reduction reaction in microbial fuel cell, Journal of the Electrochemical Society 165 (2018) F621-F628. https://doi.org/10.1149/2.0271809jes.
A. Paitier, A. Godain, D. Lyon, N. Haddour, T.M. Vogel, J.-M. Monier, Microbial fuel cell anodic microbial population dynamics during MFC start-up, Biosensors & Bioelectronics 92 (2017) 357-363. https://doi.org/https://doi.org/10.1016/j.bios.2016.100.096.
T. Pepè Sciarria, S. Arioli, G. Gargari, D. Mora, F. Adani, Monitoring microbial communities’ dynamics during the start-up of microbial fuel cells by high-throughput screening techniques, Biotechnology Reports. 21 (2019) e00310. https://doi.org/https://doi.org/10.1016/j.btre.2019.e00310.
M.C. Potter, Electrical effects accompanying the decomposition of organic compounds, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. 84 (1911) 260-276. https://doi.org/10.1098/rspb.1911.0073.
L. Rago, P. Cristiani, F. Villa, S. Zecchin, A. Colombo, L. Cavalca, A. Schievano, Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells, Bioelectrochemistry (Amsterdam, Netherlands) 116 (2017) 39-51. https://doi.org/https://doi.org/10.1016/j.bioelechem.2017.040.001.
L. Rago, D. Popp, J.T. Heiker, F. Harnisch, Electroactive microorganisms in mouse feces, Electrochimica Acta 365 (2021). https://doi.org/10.1016/j.electacta.2020.137326.
C.A. Ramírez-Vargas, A. Prado, C.A. Arias, P.N. Carvalho, A. Esteve-Núñez, H. Brix, Microbial electrochemical technologies for wastewater treatment: Principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands, Water (Switzerland). 10 (2018) 1-29. https://doi.org/10.3390/w10091128.
F. Ranzinger, M.P. Herrling, S. Lackner, V.W. Grande, A. Baniodeh, A.K. Powell, H. Horn, G. Guthausen, Direct surface visualization of biofilms with high spin coordination clusters using magnetic resonance imaging, Acta Biomaterialia 31 (2016) 167-177. https://doi.org/10.1016/j.actbio.2015.120.007.
M. Relucenti, G. Familiari, O. Donfrancesco, M. Taurino, X. Li, R. Chen, M. Artini, R. Papa, L. Selan, Microscopy methods for biofilm imaging: Focus on SEM and VP-SEM pros and cons, Biology (Basel) 10 (2021) 1-17. https://doi.org/10.3390/biology10010051.
H. Rismani-Yazdi, S.M. Carver, A.D. Christy, O.H. Tuovinen, Cathodic limitations in microbial fuel cells: An overview, Journal of Power Sources. 180 (2008) 683-694. https://doi.org/10.1016/j.jpowsour.2008.020.074.
B. Saba, A.D. Christy, Z. Yu, A.C. Co, R. Islam, O.H. Tuovinen, Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells, Bioelectrochemistry (Amsterdam, Netherlands) 113 (2017) 79-84. https://doi.org/https://doi.org/10.1016/j.bioelechem.2016.100.003.
P. Salarizadeh, M.B. Askari, A. Beheshti-Marnani, M. Seifi, S.M. Rozati, T. Rohani, N. Askari, N. Salarizadeh, S.Z. Mohammadi, Synthesis and characterization of (Co, Fe, Ni) 9 S 8 nanocomposite supported on reduced graphene oxide as an efficient and stable electrocatalyst for methanol electrooxidation toward DMFC, Journal of Materials Science: Materials in Electronics. 30 (2019) 3521-3529. https://doi.org/10.1007/s10854-018-00629-7.
M.P. Schimak, M. Kleiner, S. Wetzel, M. Liebeke, N. Dubilier, B.M. Fuchs, MiL-FISH: Multilabeled oligonucleotides for fluorescence in situ hybridization improve visualization of bacterial cells, Applied and Environmental Microbiology 82 (2016) 62-70. https://doi.org/10.1128/AEM0.02776-15.
L. Schwab, L. Rago, C. Koch, F. Harnisch, Identification of Clostridium cochlearium as an electroactive microorganism from the mouse gut microbiome, Bioelectrochemistry (Amsterdam, Netherlands) 130 (2019) 107334. https://doi.org/10.1016/j.bioelechem.2019.107334.
K. Scott, Electrochemical principles and characterization of bioelectrochemical systems, In Microbial electrochemical and fuel cells, Elsevier, 2016: pp. 29-66.
N. Sekar, R.P. Ramasamy, Electrochemical impedance spectroscopy for microbial fuel cell characterization, Journal of Microbial & Biochemical Technology. 6 (2013) 1-14.
G.O.A. da Silva, S. Pennafirme, D. da Costa Pereira, C.C.C. Waite, R.T. Lopes, I.C.B. Lima, M.A.C. Crapez, Monitoring of bacterial community structure and growth: An alternative tool for biofilm microanalysis, Biofilm. 2 (2020) 100034. https://doi.org/10.1016/j.bioflm.2020.100034.
M. Sindhuja, N.S. Kumar, V. Sudha, S. Harinipriya, Equivalent circuit modeling of microbial fuel cells using impedance spectroscopy, Journal of Energy Storage. 7 (2016) 136-146. https://doi.org/10.1016/j.est.2016.060.005.
Srivastava, Pratiksha, Abbassi, Rouzbeh, Yadav, Asheesh Kumar, Garaniya, Vikram, & Asadnia, Mohsen (2020) (In this issue). A review on the contribution of electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment. Chemosphere, Article 126926. https://doi.org/10.1016/j.chemosphere.2020.126926.
Srivastava, Pratiksha, Abbassi, Rouzbeh, Yadav, Asheesh, Garaniya, Vikram, Asadnia, Mohsen, Lewis, Trevor, & Khan, Stuart I (2021) (In this issue). Influence of applied potential on treatment performance and clogging behaviour of hybrid constructed wetland-microbial electrochemical technologies. Chemosphere, Article 131296. https://doi.org/10.1016/j.chemosphere.2021.131296.
Srivastava, Pratiksha, Abbassi, Rouzbeh, Yadav, Asheesh Kumar, Garaniya, Vikram, Lewis, Trevor, Zhao, Yaqian, & Aminabhavi, Tejraj (2021) (In this issue). Interrelation between sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands. Journal of Hazardous Materials, Article 126417. https://doi.org/10.1016/j.jhazmat.2021.126417.
Srivastava, Pratiksha, Belford, Andrew, Abbassi, Rouzbeh, Asadnia, Mohsen, Garaniya, Vikram, & Yadav, Asheesh Kumar (2021) (In this issue). Low-power energy harvester from constructed wetland-microbial fuel cells for initiating a self-sustainable treatment process. Sustainable Energy Technologies and Assessments, Article 101282. https://doi.org/10.1016/j.seta.2021.101282.
Srivastava, Pratiksha, Yadav, Asheesh Kumar, Abbassi, Rouzbeh, Garaniya, Vikram, & Lewis, Trevor (2018) (In this issue). Denitrification in a low carbon environment of a constructed wetland incorporating a microbial electrolysis cell. Journal of Environmental Chemical Engineering, 6(4), 5602-5607. https://doi.org/10.1016/j.jece.2018.08.053.
D.P.B.T.B. Strik, H. Terlouw, H.V.M. Hamelers, C.J.N. Buisman, Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC), Applied Microbiology and Biotechnology 81 (2008) 659-668. https://doi.org/10.1007/s00253-008-1679-8.
C. Sánchez, P. Dessì, M. Duffy, P.N.L. Lens, Microbial electrochemical technologies: Electronic circuitry and characterization tools, Biosensors & Bioelectronics 150 (2020) 111884. https://doi.org/10.1016/J.BIOS.2019.111884.
B. Taşkan, E. Taşkan, H. Hasar, Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti-TiO2 electrode, Environmental Progress & Sustainable Energy. 39 (2020) e13407.
T. Tsukatani, H. Suenaga, T. Higuchi, M. Shiga, K. Noguchi, K. Matsumoto, Distinction of gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium, Journal of General and Applied Microbiology. 57 (2011) 331-339. https://doi.org/10.2323/jgam.570.331.
J.L. Varanasi, R. Veerubhotla, D. Das, Diagnostic tools for the assessment of MFC, In D. Das (Ed.), Microbial fuel cell: A bioelectrochemical system that converts waste to watts, Springer International Publishing, 2018: pp. 249-268. https://doi.org/10.1007/978-3-319-66793-5_13
A. Venkataraman, M. Rosenbaum, J.B.A. Arends, R. Halitschke, L.T. Angenent, Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems, Electrochemistry Communications 12 (2010) 459-462.
D. Vidhyeswari, A. Surendhar, S. Bhuvaneshwari, Evaluation of power generation and treatment efficiency of dairy wastewater in microbial fuel cell using TiO2—SPEEK as proton exchange membrane, Water Science and Technology. 84 (2021) 3388-3402. https://doi.org/10.2166/wst.20210.467.
R.D. Walker, Standards for antimicrobial susceptibility testing, American Journal of Veterinary Research 60 (1999) 1034.
H. Wang, Z.J. Ren, A comprehensive review of microbial electrochemical systems as a platform technology, Biotechnology Advances 31 (2013) 1796-1807. https://doi.org/10.1016/j.biotechadv.2013.100.001.
R. Wightman, An overview of cryo-scanning electron microscopy techniques for plant imaging, Plants. 11 (2022). https://doi.org/10.3390/plants11091113.
WebbR.H., Confocal optical microscopy: Reports on progress in physics, Reports on Progress in Physics. 59 (1996) 427-471.
C.J. Wright, M.K. Shah, L.C. Powell, I. Armstrong, Application of AFM from microbial cell to biofilm, Scanning. 32 (2010) 134-149. https://doi.org/10.1002/sca.20193.
C.S. Xu, K.J. Hayworth, Z. Lu, P. Grob, A.M. Hassan, J.G. García-Cerdán, K.K. Niyogi, E. Nogales, R.J. Weinberg, H.F. Hess, Enhanced FIB-SEM systems for large-volume 3D imaging, eLife. 6 (2017) 1-36. https://doi.org/10.7554/eLife.25916.
Z. Ye, J. Hou, M.W. Ellis, B. Behkam, Effect of anode surface roughness on power generation in microbial fuel cells, In: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2012: pp. 1409-1414.
J. Yuan, H. Yuan, S. Huang, L. Liu, F. Fu, Y. Zhang, F. Cheng, J. Li, Comprehensive performance, bacterial community structure of single-chamber microbial fuel cell affected by COD/N ratio and physiological stratifications in cathode biofilm, Bioresource Technology 320 (2021) 124416. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124416.
T. Zhang, C. Cui, S. Chen, H. Yang, P. Shen, The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell, Electrochemistry Communications 10 (2008) 293-297.
C. Zhao, J. Chen, Y. Ding, V.B. Wang, B. Bao, S. Kjelleberg, B. Cao, S.C.J. Loo, L. Wang, W. Huang, Q. Zhang, Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells, ACS Applied Mater Interfaces. 7 (2015) 14501-14505. https://doi.org/10.1021/acsami.5b03990.
J. Zhao, F. Li, Y. Cao, X. Zhang, T. Chen, H. Song, Z. Wang, Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms, Biotechnology Advances 53 (2021) 107682. https://doi.org/10.1016/j.biotechadv.2020.107682.
J. Zhao, J. Wu, X. Li, S. Wang, B. Hu, X. Ding, The denitrification characteristics and microbial community in the cathode of an MFC with aerobic denitrification at high temperatures, Frontiers in Microbiology. 8 (2017) 9.
W. Zhi, Z. Ge, Z. He, H. Zhang, Methods for understanding microbial community structures and functions in microbial fuel cells: A review, Bioresource Technology 171 (2014) 461-468.
Z.I. Abubakari, M. Mensah, R. Buamah, R.C. Abaidoo, Assessment of the electricity generation, desalination and wastewater treatment capacity of a plant microbial desalination cell (PMDC), International Journal of Energy and Water Resources. 3 (2019) 213-218. https://doi.org/10.1007/s42108-019-00030-y.
A. Al-Mamun, W. Ahmad, M.S. Baawain, M. Khadem, B.R. Dhar, A review of microbial desalination cell technology: Configurations, optimization and applications, Journal of Cleaner Production. 183 (2018) 458-480. https://doi.org/10.1016/j.jclepro.2018.02.054.
A. Al-Mamun, W. Ahmed, T. Jafary, J.K. Nayak, A. Al-Nuaimi, A. Sana, Recent advances in microbial electrosynthesis system: Metabolic investigation and process optimization, Biochemical Engineering Journal 196 (2023) 108928. https://doi.org/10.1016/j.bej.2023.108928.
Amit, R. Chandra, U.K. Ghosh, J.K. Nayak, Phycoremediation potential of marine microalga Tetraselmis indica on secondary treated domestic sewage for nutrient removal and biodiesel production, Environmental Science and Pollution Research 24 (2017) 20868-20875. https://doi.org/10.1007/s11356-017-9734-6.
Amit, J.K. Nayak, U.K. Ghosh, Microalgal remediation of anaerobic pretreated pharmaceutical wastewater for sustainable biodiesel production and electricity generation, Journal of Water Process Engineering. 35 (2020) 101192. https://doi.org/10.1016/j.jwpe.2020.101192.
A. Amrut Pawar, A. Karthic, S. Lee, S. Pandit, S.P. Jung, Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations, Environmental Engineering Research. 27 (2020) 200484-0. https://doi.org/10.4491/eer.2020.484.
P. Bakonyi, L. Koók, T. Rózsenberszki, V. Kalauz-Simon, K. Bélafi-Bakó, N. Nemestóthy, CO2-refinery through microbial electrosynthesis (MES): A concise review on design, operation, biocatalysts and perspectives, Journal of CO2 Utilization. 67 (2023) 0-7. https://doi.org/10.1016/j.jcou.2022.102348.
D.F. Call, R.C. Wagner, B.E. Logan, Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell, Applied and Environmental Microbiology 75 (2009) 7579-7587. https://doi.org/10.1128/AEM.01760-09.
E. Chorbadzhiyska, I. Bardarov, Y. Hubenova, M. Mitov, Modified graphite electrodes as potential cathodic electrocatalysts for microbial electrolysis cells, Bulgarian Chemical Communications. 51 (2019) 284-288. https://doi.org/10.34049/bcc.51.2.5154.
N. Colantonio, Y. Kim, Cadmium (II) removal mechanisms in microbial electrolysis cells, Journal of Hazardous Materials 311 (2016) 134-141. https://doi.org/10.1016/j.jhazmat.2016.02.062.
S. Das, S. Das, I. Das, M.M. Ghangrekar, Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review, Materials Science for Energy Technologies. 2 (2019) 687-696. https://doi.org/10.1016/j.mset.2019.08.003.
N. Dizge, B.O. Unal, E.B. Arikan, A. Karagunduz, B. Keskinler, Recent progress and developments in membrane materials for microbial electrochemistry technologies: A review, Bioresource Technology Reports. 8 (2019). https://doi.org/10.1016/j.biteb.2019.100308.
Y. Fan, H. Liu, Materials for microbial fuel cells, materials for low-temperature Fuel Cells. (2015) 145-166. https://doi.org/10.1002/9783527644308.ch07.
Gautam, R., Nayak, J. K., Daverey, A., & Ghosh, U. K. (2021). Emerging sustainable opportunities for waste to bioenergy: An overview. In Waste-to-energy approaches towards zero waste (pp. 1-55). Elsevier.
M.M. Ghangrekar, S. Das, S. Das, Microbial Electrochemical Technologies for CO2 Sequestration, Elsevier Inc., 2021. https://doi.org/10.1016/b978-0-12-821878-5.00016-7.
Z. Guo, S. Thangavel, L. Wang, Z. He, W. Cai, A. Wang, W. Liu, Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode: The effect of the cathode/anode ratio on bioenergy recovery, Energy and Fuels. 31 (2017) 615-620. https://doi.org/10.1021/acs.energyfuels.6b02375.
S. Gupta, A. Nayak, C. Roy, A.K. Yadav, An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production, Chemosphere 263 (2021) 128132. https://doi.org/10.1016/j.chemosphere.2020.128132.
F. Harnisch, U. Schröder, From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems, Chemical Society Reviews 39 (2010) 4433-4448. https://doi.org/10.1039/c003068f.
A.Z. Imoro, M. Mensah, R. Buamah, Developments in the microbial desalination cell technology: A review, Water-Energy Nexus. 4 (2021) 76-87. https://doi.org/10.1016/j.wen.2021.04.002.
A.S. Jatoi, Z. Hashmi, S.A. Mazari, N.M. Mubarak, R.R. Karri, S. Ramesh, M. Rezakazemi, A comprehensive review of microbial desalination cells for present and future challenges, Desalination. 535 (2022) 115808. https://doi.org/10.1016/j.desal.2022.115808.
T. Jayabalan, M. Matheswaran, S. Naina, Mohammed, Biohydrogen production from sugar industry effluents using nickel based electrode materials in microbial electrolysis cell, International Journal of Hydrogen Energy 44 (2019) 17381-17388. https://doi.org/10.1016/j.ijhydene.2018.09.219.
Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology. 38, 569-582. Available from https://doi.org/10.1016/j.enzmictec.2005.09.015.
D. Ki, S.C. Popat, C.I. Torres, Reduced overpotentials in microbial electrolysis cells through improved design, operation, and electrochemical characterization, Chemical Engineering Journal. 287 (2016) 181-188. https://doi.org/10.1016/j.cej.2015.11.022.
J. Kumar Nayak, R. Gautam, Uttam, K. Ghosh, Bioremediation potential of bacterial consortium on different wastewaters for electricity and biomass feedstock generation, Biomass Conversion and Biorefinery 2022 1 (2022) 1-14. https://doi.org/10.1007/S13399-022-02992-2.
H. Liu, H. Hu, J. Chignell, Y. Fan, Microbial electrolysis: Novel technology for hydrogen production from biomass, Biofuels. 1 (2010) 129-142. https://doi.org/10.4155/bfs.09.9.
B.E. Logan, J.M. Regan, Microbial fuel cells—Challenges and applications, Environmental Science & Technology 40 (2006) 5172-5180. https://doi.org/10.1021/es0627592.
B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers, T.H.J.A. Sleutels, A.W. Jeremiasse, R.A. Rozendal, Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environmental Science & Technology 42 (2008) 8630-8640. https://doi.org/10.1021/es801553z.
L. Lu, D. Hou, Y. Fang, Y. Huang, Z.J. Ren, Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells, Electrochimica Acta 206 (2016) 381-387. https://doi.org/10.1016/j.electacta.2016.04.167.
S. Maddalwar, K. Kumar Nayak, M. Kumar, L. Singh, Plant microbial fuel cell: Opportunities, challenges, and prospects, Bioresource Technology 341 (2021) 125772. https://doi.org/10.1016/j.biortech.2021.125772.
J.K. Nayak, Amit, U.K. Ghosh, An innovative mixotrophic approach of distillery spent wash with sewage wastewater for biodegradation and bioelectricity generation using microbial fuel cell, Journal of Water Process Engineering 23 (2018) 306-313. https://doi.org/10.1016/j.jwpe.2018.04.003.
J.K. Nayak, U.K. Ghosh, Post treatment of microalgae treated pharmaceutical wastewater in photosynthetic microbial fuel cell (PMFC) and biodiesel production, Biomass Bioenergy. 131 (2019) 105415. https://doi.org/10.1016/j.biombioe.2019.105415.
D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresource Technology 101 (2010) 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017.
P. Parkhey, P. Gupta, Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: A review, Renewable and Sustainable Energy Reviews. 69 (2017) 1085-1099. https://doi.org/10.1016/j.rser.2016.09.101.
K. Rabaey, R.A. Rozendal, Microbial electrosynthesis—Revisiting the electrical route for microbial production, Nature Publishing Group. 8 (2010). https://doi.org/10.1038/nrmicro2422.
S. Rahman, T. Jafary, A. Al-Mamun, M.S. Baawain, M.R. Choudhury, H. Alhaimali, S.A. Siddiqi, B.R. Dhar, A. Sana, S.S. Lam, M. Aghbashlo, M. Tabatabaei, Towards upscaling microbial desalination cell technology: A comprehensive review on current challenges and future prospects, Journal of Cleaner Production. 288 (2021) 125597. https://doi.org/10.1016/j.jclepro.2020.125597.
M. Roy, N. Aryal, Y. Zhang, S.A. Patil, D. Pant, Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization, Current Opinion in Green and Sustainable Chemistry. 35 (2022) 100605. https://doi.org/10.1016/j.cogsc.2022.100605.
I. Rusyn, Role of microbial community and plant species in performance of plant microbial fuel cells, Renewable and Sustainable Energy Reviews. 152 (2021) 111697. https://doi.org/10.1016/j.rser.2021.111697.
C. Sanchez, P. Dessì, M. Duffy, P.N.L. Lens, Microbial electrochemical technologies: Electronic circuitry and characterization tools, Biosensors & Bioelectronics (2019) 111884. https://doi.org/10.1016/j.bios.2019.111884.
C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review, Journal of Power Sources. 356 (2017) 225-244. https://doi.org/10.1016/j.jpowsour.2017.03.109.
S. Shiva Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis—A review, Materials Science for Energy Technologies. 2 (2019) 442-454. https://doi.org/10.1016/j.mset.2019.03.002.
S. Sevda, H. Yuan, Z. He, I.M. Abu-Reesh, Microbial desalination cells as a versatile technology: Functions, optimization and prospective, Desalination. 371 (2015) 9-17. https://doi.org/10.1016/j.desal.2015.05.021.
N. Talapatra, R. Gautam, V. Mittal, U.K. Ghosh, A comparative study of the growth of microalgae-bacteria symbiotic consortium with the axenic culture of microalgae in dairy wastewater through extraction and quantification of chlorophyll, Materials Today: Proceedings (2021). https://doi.org/10.1016/j.matpr.2021.06.227.
M.F. Umar, S.Z. Abbas, M.N. Mohamad Ibrahim, N. Ismail, M. Rafatullah, Insights into advancements and electrons transfer mechanisms of electrogens in benthic microbial fuel cells, Membranes (Basel). 10 (2020) 1-18. https://doi.org/10.3390/membranes10090205.
S. Van De Vyver, L. Peng, J. Geboers, H. Schepers, F. De Clippel, C.J. Gommes, B. Goderis, A. Jacobs, B.F. Sels, Q. Fu, D. Wang, X. Li, Q. Yang, Q. Xu, B.J. Ni, Q. Wang, X. Liu, F. Ndayisenga, Z. Yu, … M. Guizani, Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane, Renewable and Sustainable Energy Reviews. 151 (2021) 461-475. https://doi.org/10.1039/c1ee02511b.
K.R. Wehmeyer, R.J. White, P.T. Kissinger, W.R. Heineman, Electrochemical affinity assays/sensors: Brief history and current status, Annual Review of Analytical Chemistry. 14 (2021) 109-131.
S. Zhang, J. Jiang, H. Wang, F. Li, T. Hua, W. Wang, A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts, Journal of CO2 Utilization. 51 (2021) 101640. https://doi.org/10.1016/j.jcou.2021.101640.