Article (Périodiques scientifiques)
On the suitability of hugging face hub for empirical studies
AIT-MIMOUNE FONOLLA, Adem; Izquierdo, JLC; CABOT, Jordi
2025In Empirical Software Engineering, 30 (2)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
EMSE___HF_for_Empirical_Studies-4.pdf
Preprint Auteur (5.31 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale, Partage dans les Mêmes Conditions
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mining software repositories; Data analysis; Empirical study; ML; Hugging face hub
Résumé :
[en] Context. Empirical studies in software engineering mainly rely on the data available on code-hosting platforms, being GitHub the most representative. Nevertheless, in the last years, the emergence of Machine Learning (ML) has led to the development of platforms specifically designed for hosting ML-based projects, with Hugging Face Hub (HFH) as the most popular one. So far, there have been no studies evaluating the potential of HFH for such studies. Objective. We aim at performing an exploratory study of the current state of HFH and its suitability to be used as a source platform for empirical studies. Method. We conduct a qualitative and quantitative analysis of HFH. The former will be performed by comparing the features of HFH with those of other code-hosting platforms, such as GitHub and GitLab. The latter will be performed by analyzing the data available in HFH. Results. We propose a feature framework to characterize HFH and report on the current usage of the platform, both in terms of number and types of projects (and surrounding community) and the features they mostly rely on. Conclusions. The results confirm that HFH offers enough features and diverse enough data to be the source of relevant empirical studies on the development, evolution and usage of AI-related projects. The results also triggered a discussion on aspects of HFH that should be considered when performing such empirical studies.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
AIT-MIMOUNE FONOLLA, Adem  ;  University of Luxembourg
Izquierdo, JLC
CABOT, Jordi  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PI Cabot
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
On the suitability of hugging face hub for empirical studies
Date de publication/diffusion :
18 janvier 2025
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Springer Science and Business Media LLC
Volume/Tome :
30
Fascicule/Saison :
2
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR16544475 - Better Smart Software Faster (Besser) - An Intelligent Low-code Infrastructure For Smart Software, 2020 (01/01/2022-...) - Jordi Cabot
Intitulé du projet de recherche :
U-AGR-7344 - P20/IS/16544475/BESSER/Cabot - CABOT Jordi
Organisme subsidiant :
Ministerio de Ciencia e Innovación
Fonds National de la Recherche Luxembourg
Subventionnement (détails) :
This work is part of the project TED2021-130331B-I00 funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR; and BESSER, funded by the Luxembourg National Research Fund (FNR) PEARL program, grant agreement 16544475.
Disponible sur ORBilu :
depuis le 07 février 2025

Statistiques


Nombre de vues
120 (dont 8 Unilu)
Nombre de téléchargements
17 (dont 1 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
2
OpenCitations
 
0
citations OpenAlex
 
1
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu