Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Transfer Learning for Covert Speech Classification Using EEG Hilbert Envelope and Temporal Fine Structure
DURAISAMY, Saravanakumar; DUBIEL, Mateusz; REKRUT, Maurice et al.
2025In Proceedings of ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Peer reviewed
 

Documents


Texte intégral
silent_speech_icassp25.pdf
Preprint Auteur (994.98 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Speech BCI; Electroencephalography; Hilbert Envelope; Transfer Learning; Signal Processing
Résumé :
[en] Brain-Computer Interfaces (BCIs) can decode imagined speech from neural activity. However, these systems typically require extensive training sessions where participants imaginedly repeat words, leading to mental fatigue and difficulties identifying the onset of words, especially when imagining sequences of words. This paper addresses these challenges by transferring a classifier trained in overt speech data to covert speech classification. We used electroencephalogram (EEG) features derived from the Hilbert envelope and temporal fine structure, and used them to train a bidirectional long-short-term memory (BiLSTM) model for classification. Our method reduces the burden of extensive training and achieves state-of-the-art classification accuracy: 86.44% for overt speech and 79.82% for covert speech using the overt speech classifier.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DURAISAMY, Saravanakumar ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
DUBIEL, Mateusz ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
REKRUT, Maurice;  German Research Center for Artificial Intelligence (DFKI)
LEIVA, Luis A.  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Transfer Learning for Covert Speech Classification Using EEG Hilbert Envelope and Temporal Fine Structure
Date de publication/diffusion :
06 avril 2025
Nom de la manifestation :
(ICASSP 2025): 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing
Lieu de la manifestation :
Hyderabad, Inde
Date de la manifestation :
from 6 to 11 April 2025
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Maison d'édition :
Institute of Electrical and Electronics Engineers (IEEE)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet européen :
HE - 101071147 - SYMBIOTIK - Context-aware adaptive visualizations for critical decision making
Projet FnR :
FNR15722813 - Brainsourcing For Affective Attention Estimation, 2021 (01/02/2022-31/01/2025) - Luis Leiva
Organisme subsidiant :
UE - Union Européenne
Subventionnement (détails) :
Research supported by the Horizon 2020 FET program of the European Union through the ERA-NET Cofund funding (grant CHIST-ERA-20-BCI-001) and the Pathfinder program of the European Innovation Council (SYMBIOTIK project, grant 101071147). Rekrut’s work is supported by the German Federal Ministry of Education and Research (grants 01IS12050 and 01IS23073).
Disponible sur ORBilu :
depuis le 06 février 2025

Statistiques


Nombre de vues
167 (dont 17 Unilu)
Nombre de téléchargements
63 (dont 5 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu