Carbon Monoxide; Density Functional Theory Calculations; Graphene; Scanning Tunnelling Microscopy; Single Atom Catalysts; Temperature Programmed Desorption; Catalysis; Chemistry (all); x-ray photoelectron spectroscopy; 2d materials; nanotechnology; surface science; ultra-high vacuum
Abstract :
[en] Confined single metal atoms in graphene-based materials have proven to be excellent catalysts for several reactions and promising gas sensing systems. However, whether the chemical activity arises from the specific type of metal atom or is a direct consequence of the confinement itself remains unclear.
Disciplines :
Physics
Author, co-author :
Perilli, Daniele ; Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125, Milano, Italy
Chesnyak, Valeria ; Physics Department, University of Trieste, via A. Valerio 2, Trieste, 34127, Italy ; CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy ; Present address: School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, United States and Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
Ugolotti, Aldo ; Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125, Milano, Italy
PANIGHEL, Mirco ; CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
Vigneri, Stefano; Physics Department, University of Trieste, via A. Valerio 2, Trieste, 34127, Italy ; CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
Armillotta, Francesco ; Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland
Naderasli, Pardis; Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland
Stredansky, Matus; CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy ; Present address: School of Chemistry, University of Birmingham Edgbaston, University Rd W, Birmingham, B15 2TT, United Kingdom
Schied, Monika; Elettra - Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5, 34149, Trieste, Italy ; Present address: CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada Statale 14, km 163.5, 34149, Trieste, Italy
Cepek, Cinzia; CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
Comelli, Giovanni ; Physics Department, University of Trieste, via A. Valerio 2, Trieste, 34127, Italy ; CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
Brune, Harald; Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland
Africh, Cristina ; CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
Di Valentin, Cristiana ; Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125, Milano, Italy
H2020 - 101007417 - NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT
Funders :
Ministero dell'Università e della Ricerca Horizon 2020 Framework Programme European Union
Funding text :
The authors acknowledge support from the Italian Ministry of Education, Universities and Research (MIUR) through the program PRIN 2017 - Project no. 2017NYPHN8. D.P. and C.D.V acknowledge funding from the European Union – NextGenerationEU through the Italian Ministry of University and Research under PNRR – M4C2I1.4 ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing (Grant No. CN00000013 and Innovation Grant with Leonardo and Ferrovie dello Stato). M.P. and C.A. acknowledge funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101007417 NFFA-Europe Pilot. G.C. acknowledges support from the European Union - NextGenerationEU - Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Investimento 1.3 [grant no. PE 00000023, within the National Quantum Science and Technology Institute (NQSTI)]; C.A. and C.C. acknowledge the European Union NextGenerationEU - Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Investimento 1.3 - Fondazione NEST - “Network 4 Energy Sustainable Transition” - Spoke 4, Clean hydrogen and final uses (grant no. PE00000021).
J. Hagen, Industrial catalysis: a practical approach. John Wiley & Sons, 2015.
J. García-Serna, R. Piñero-Hernanz, D. Durán-Martín, Catal. Today 2022, 387, 237–243.
M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116(6), 3594–3657.
S. Mitchell, J. Pérez-Ramírez, Nat. Commun. 2020, 11(1), 1–3.
S. K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Pérez-Ramírez, Chem. Rev. 2020, 120(21), 11703–11809.
Q. Li, Z. Li, Q. Zhang, L. Zheng, W. Yan, X. Liang, Y. Li, Nano Res. 2021 14, 1435–1442.
S. Lv, H. Wang, Y. Zhou, D. Tang, S. Bi, Coord. Chem. Rev. 2023, 478, 214976.
D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108(8), 3351–3378.
Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao, Chemical review 2018, 119(3), 1806–1854.
L. Liu, T. Chen, Z. Chen, Adv. Sci. 2024, 11(13), 2308046.
D. Leo, D. Sheng, L. Z. Kimberly, P. Nicholas, P. Xiaoqing, C. Phillip, Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2, 2017.
H. Wang, R. Shimogawa, L. Zhang, L. Ma, S. N. Ehrlich, N. Marinkovic, A. I. Frenkel, Commun. Chem. 2023, 6(1), 264.
S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, X. Sun, Sci. Rep. 2013, 3(1), 1–9.
T. Kosmala, A. Baby, M. Lunardon, D. Perilli, H. Liu, C. Durante, G. Granozzi, Nature Catalysis 2021, 4(10), 850–859.
M. A. Bañares, M. Daturi, Catal. Today 2023, 423, 114255.
D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu, Y. Liu, X. Bao, Sci. Adv. 2015, 1(11), e1500462.
M. Zhang, Y. G. Wang, W. Chen, J. Dong, L. Zheng, J. Luo, Y. Li, J. Am. Chem. Soc. 2017, 139(32), 10976–10979.
X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Bao, Chem 2018, 4(8), 1902–1910.
F. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng, Z. Jia, D. Ma, J. Am. Chem. Soc. 2018, 140(41), 13142–13146.
X. Chen, L. Yu, S. Wang, D. Deng, X. Bao, Nano Energy 2017, 32, 353–358.
H. R. Byon, J. Suntivich, Y. Shao-Horn, Chem. Mater. 2011, 23(15), 3421–3428.
H. B. Yang, S. F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, B. Liu, Nat. Energy 2018, 3(2), 140–147.
C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi, M. Ren, J. M. Tour, Adv. Energy Mater. 2018, 8(19), 1703487.
K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, H. Wang, Energy Environ. Sci. 2018, 11(4), 893–903.
L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, X. Yao, Chem 2018, 4(2), 285–297.
X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Energy Environ. Sci. 2016, 9(1), 123–129.
M. Zhou, Y. Jiang, G. Wang, W. Wu, W. Chen, P. Yu, L. Mao, Nat. Commun. 2020, 11(1), 3188.
H. Y. Zhuo, X. Zhang, J. X. Liang, Q. Yu, H. Xiao, J. Li, Chem. Rev. 2020, 120(21), 12315–12341.
W. Zhang, Q. Fu, Q. Luo, L. Sheng, J. Yang, JACS Au 2021, 1(12), 2130–2145.
Y. H. Lu, M. Zhou, C. Zhang, Y. P. Feng, J. Phys. Chem. C 2009, 113(47), 20156–20160.
V. Chesnyak, D. Perilli, M. Panighel, A. Namar, A. Markevich, T. A. Bui, C. Africh, Sci. Adv. 2024, 10(45), eado8956.
V. Carnevali, L. L. Patera, G. Prandini, M. Jugovac, S. Modesti, G. Comelli, C. Africh, Nanoscale 2019, 11(21), 10358–10364.
L. L. Patera, F. Bianchini, C. Africh, C. Dri, G. Soldano, M. M. Mariscal, G. Comelli, Science 2018, 359(6381), 1243–1246.
S. S. Sung, R. Hoffmann, J. Am. Chem. Soc. 1985, 107(3), 578–584.
D. Perilli, D. Selli, H. Liu, E. Bianchetti, C. Di Valentin, J. Phys. Chem. C 2018, 122(41), 23610–23622.
P. A. Redhead, Thermal desorption of gases. Vacuum 1962, 12(4), 203–211.
J. B. Peng, H. Q. Geng, X. F. Wu, Chem 2019, 5(3), 526–552.
P. S. Bagus, C. J. Nelin, C. W. Bauschlicher Jr, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 1984, 2(2), 905–909.
C. A. Gaggioli, L. Belpassi, F. Tarantelli, P. Belanzoni, Chem. Commun. 2017, 53(10), 1603–1606.
G. Bistoni, S. Rampino, N. Scafuri, G. Ciancaleoni, D. Zuccaccia, L. Belpassi, F. Tarantelli, Chem. Sci. 2016, 7(2), 1174–1184.
A. Baby, L. Trovato, C. Di Valentin, Carbon 2021, 174, 772–788.
D. Perilli, R. Breglia, C. D. Valentin, J. Phys. Chem. C 2022, 126(23), 9615–9622.
R. Breglia, D. Perilli, C. Di Valentin, Materials Today Chemistry 2023, 33, 101728.
S. Del Puppo, V. Carnevali, D. Perilli, F. Zarabara, A. L. Rizzini, G. Fornasier, M. Peressi, Carbon 2021, 176, 253–261.
M. L. Bocquet, P. Sautet, Surf. Sci. 1996, 360(1–3), 128–136.
V. Chesnyak, S. Stavrić, M. Panighel, G. Comelli, M. Peressi, C. Africh, Nanoscale 2022, 14(9), 3589–3598.
V. Chesnyak, S. Stavrić, M. Panighel, D. Povoledo, S. del Puppo, M. Peressi, C. Africh, Small Structures 2024, 2400055.
M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257(7), 2717–2730.
L. L. Patera, C. Africh, R. S. Weatherup, R. Blume, S. Bhardwaj, C. Castellarin-Cudia, C. Cepek, ACS Nano 2013, 7(9), 7901–7912.
G. S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, U. Diebold, Nat. Mater. 2013, 12(8), 724–728.
R. Bliem, J. E. van der Hoeven, J. Hulva, J. Pavelec, O. Gamba, P. E. de Jongh, G. S. Parkinson, Proc. Natl. Acad. Sci. USA 2016, 113(32), 8921–8926.