[en] The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles. Annealing the sample to temperatures above 350 °C removes the contaminants by hydrogenation to methane.
Disciplines :
Physique
Auteur, co-auteur :
Leidinger, Paul Maurice ; Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland. paul.leidinger@inano.au.dk
PANIGHEL, Mirco ; CNR - Istituto Officina dei Materiali (IOM), Trieste, Laboratorio TASC, Strada Statale 14, km 163.5, 34149 Basovizza, Italy
Sushkevich, Vitaly L ; Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland. paul.leidinger@inano.au.dk
Piseri, Paolo ; Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy ; Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (CIMAINA), Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
Podestà, Alessandro ; Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
van Bokhoven, Jeroen A ; Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland. paul.leidinger@inano.au.dk ; Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
Artiglia, Luca ; Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland. paul.leidinger@inano.au.dk
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Influence of zinc oxide nanoparticles on the carbon accumulation on silver exposed to carbon dioxide hydrogenation reaction conditions.
H2020 - 101007417 - NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT
Organisme subsidiant :
Horizon 2020 Framework Programme European Union
Subventionnement (détails) :
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 101007417 having benefited from the access provided by CNR-IOM in Trieste and UMIL in Milano within the framework of the NFFA-Europe Pilot Transnational Access Activity, proposal ID456.
Pfisterer J. H. K. Liang Y. Schneider O. Bandarenka A. S. Direct instrumental identification of catalytically active surface sites Nature 2017 549 74 77 https://dx.doi.org/10.1038/nature23661
Böller B. Durner K. M. Wintterlin J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunnelling microscopy Nat. Catal. 2019 2 1027 1034 https://dx.doi.org/10.1038/s41929-019-0360-1
Roy K. Artiglia L. van Bokhoven J. A. Ambient Pressure Photoelectron Spectroscopy: Opportunities in Catalysis from Solids to Liquids and Introducing Time Resolution ChemCatChem 2018 10 666 682 https://dx.doi.org/10.1002/cctc.201701522
Zabilskiy M. et al., The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol Nat. Commun. 2020 11 2409 https://dx.doi.org/10.1038/s41467-020-16342-1
Yang H. et al., Predictions of Chemical Shifts for Reactive Intermediates in CO2 Reduction under Operando Conditions ACS Appl. Mater. Interfaces 2021 13 31554 31560 https://dx.doi.org/10.1021/acsami.1c02909
Behrens M. et al., The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts Science 2012 336 893 897 https://dx.doi.org/10.1126/science.1219831
Mockenhaupt B. et al., High-Pressure Pulsing of Ammonia Results in Carbamate as Strongly Inhibiting Adsorbate of Methanol Synthesis over Cu/ZnO/Al2O3 J. Phys. Chem. C 2023 127 3497 3505 https://dx.doi.org/10.1021/acs.jpcc.2c08823
Abu-Dahrieh J. Rooney D. Goguet A. Saih Y. Activity and deactivation studies for direct dimethyl ether synthesis using CuO-ZnO-Al2O3 with NH4ZSM-5, HZSM-5 or γ-Al2O3 Chem. Eng. J. 2012 203 201 211 https://dx.doi.org/10.1016/j.cej.2012.07.011
Eren B. et al., Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption Science 2016 351 475 478 https://dx.doi.org/10.1126/science.aad8868
Helveg S. et al., Atomic-scale imaging of carbon nanofibre growth Nature 2004 427 426 429 https://dx.doi.org/10.1038/nature02278
Zhou J. et al., Regeneration of catalysts deactivated by coke deposition: A review Chin. J. Catal. 2020 41 1048 1061 https://dx.doi.org/10.1016/s1872-2067(20)63552-5
Theofanidis S. A. Batchu R. Galvita V. V. Poelman H. Marin G. B. Carbon gasification from Fe-Ni catalysts after methane dry reforming Appl. Catal., B 2016 185 42 55 https://dx.doi.org/10.1016/j.apcatb.2015.12.006
Leidinger P. M. et al., Influence of alumina on the performance of Ag/ZnO based catalysts for carbon dioxide hydrogenation J. Catal. 2024 440 115837 https://dx.doi.org/10.1016/j.jcat.2024.115837
Bowker M. Methanol Synthesis from CO(2) Hydrogenation ChemCatChem 2019 11 4238 4246 https://dx.doi.org/10.1002/cctc.201900401
Lee K.-J. Ye Y. Su H. Mun B. S. Crumlin E. J. Correlating the Reverse Water-Gas Shift Reaction with Surface Chemistry: The Influence of Reactant Gas Exposure to Ni(100) ACS Catal. 2023 13 9041 9050 https://dx.doi.org/10.1021/acscatal.3c01517
Beck A. Newton M. A. van de Water L. G. A. van Bokhoven J. A. The Enigma of Methanol Synthesis by Cu/ZnO/Al(2)O(3)-Based Catalysts Chem. Rev. 2024 124 4543 4678 https://dx.doi.org/10.1021/acs.chemrev.3c00148
Christmann K., in Surface and Interface Science, 2016, pp. 255-356
Hohmeyer J. et al., Activation of dihydrogen on supported and unsupported silver catalysts J. Catal. 2010 269 5 14 https://dx.doi.org/10.1016/j.jcat.2009.10.008
Chen X. Wang X. Fang D. A review on C1s XPS-spectra for some kinds of carbon materials Fullerenes, Nanotubes Carbon Nanostruct. 2020 28 1048 1058 https://dx.doi.org/10.1080/1536383x.2020.1794851
Taylor C. E. Garvey S. D. Pemberton J. E. Carbon Contamination at Silver Surfaces: Surface Preparation Procedures Evaluated by Raman Spectroscopy and X-ray Photoelectron Spectroscopy Anal. Chem. 1996 68 2401 2408 https://dx.doi.org/10.1021/ac950753h
Kim S. et al., Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts Green Chem. 2019 21 3715 3743 https://dx.doi.org/10.1039/c9gc01210a
Beuls A. et al., Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst Appl. Catal., B 2012 113-114 2 10 https://dx.doi.org/10.1016/j.apcatb.2011.02.033
Luh D.-A. et al., Single-crystalline silver films on mica Thin Solid Films 2018 645 215 221 https://dx.doi.org/10.1016/j.tsf.2017.10.051
Poensgen M. Wolf J. F. Frohn J. Giesen M. Ibach H. Step dynamics on Ag(111) and Cu(100) surfaces Surf. Sci. 1992 274 430 440 https://dx.doi.org/10.1016/0039-6028(92)90848-z
Jeong H.-C. Williams E. D. Steps on surfaces: experiment and theory Surf. Sci. Rep. 1999 34 171 294 https://dx.doi.org/10.1016/s0167-5729(98)00010-7
Ozcomert J. S. Pai W. W. Bartelt N. C. Reutt-Robey I. E. Step configurations near pinning sites on Ag(110) Surf. Sci. 1993 293 183 194 https://dx.doi.org/10.1016/0039-6028(93)90312-8
Behafarid F. Cuenya B. R. Nano Pinstripes: TiO2 Nanostripe Formation by Nanoparticle-Mediated Pinning of Step Edges J. Phys. Chem. Lett. 2012 3 608 612 https://dx.doi.org/10.1021/jz300022c
Aravinda C. L. Mukhopadhyay I. Freyland W. Electrochemical in situ STM study of Al and Ti-Al alloy electrodeposition on Au(111) from a room temperature molten salt electrolyte Phys. Chem. Chem. Phys. 2004 6 5225 5231 https://dx.doi.org/10.1039/b407846m
Abild-Pedersen F. et al., Methane activation on Ni(111): Effects of poisons and step defects Surf. Sci. 2005 590 127 137 https://dx.doi.org/10.1016/j.susc.2005.05.057
Hsieh M.-F. Li H.-D. Lin D.-S. Morgenstern K. Formation, Binding, and Stability of O-Ag-CO2-Ag-O Compounds on Ag(100) Investigated by Low Temperature Scanning Tunneling Microscopy and Manipulation J. Phys. Chem. C 2010 114 14173 14179 https://dx.doi.org/10.1021/jp104170b
Plischke J. K. Albert Vannice M. Effect of pretreatment on the adsorption properties of silver crystallites Appl. Catal. 1988 42 255 283 https://dx.doi.org/10.1016/0166-9834(88)80007-1
Nørskov J. K. et al., Universality in Heterogeneous Catalysis J. Catal. 2002 209 275 278 https://dx.doi.org/10.1006/jcat.2002.3615
Czekaj I. et al., Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS) Appl. Catal., A 2007 329 68 78 https://dx.doi.org/10.1016/j.apcata.2007.06.027
Helveg S. Sehested J. Rostrup-Nielsen J. R. Whisker carbon in perspective Catal. Today 2011 178 42 46 https://dx.doi.org/10.1016/j.cattod.2011.06.023
Miao B. Ma S. S. K. Wang X. Su H. Chan S. H. Catalysis mechanisms of CO2 and CO methanation Catal. Sci. Technol. 2016 6 4048 4058 https://dx.doi.org/10.1039/c6cy00478d
Jensen S. et al., Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis Nat. Commun. 2024 15 3865 https://dx.doi.org/10.1038/s41467-024-48168-6
Koitaya T. et al., CO2 Activation and Reaction on Zn-Deposited Cu Surfaces Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy ACS Catal. 2019 9 4539 4550 https://dx.doi.org/10.1021/acscatal.9b00041
Au C. T. Hirsch W. Hirschwald W. Adsorption of carbon monoxide and carbon dioxide on annealed and defect zinc oxide (000) surfaces studied by photoelectron spectroscopy (XPS and UPS) Surf. Sci. 1988 197 391 401 https://dx.doi.org/10.1016/0039-6028(88)90635-8
Felter T. E. et al., The adsorption of methanol on Ag(111) and its reaction with preadsorbed oxygen Appl. Surf. Sci. 1983 16 351 364 https://dx.doi.org/10.1016/0378-5963(83)90079-x
Zugic B. et al., Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97 J. Catal. 2019 380 366 374 https://dx.doi.org/10.1016/j.jcat.2019.08.041
Baumgarten E. Schuck A. Oxygen spillover and its possible role in coke burning Appl. Catal. 1988 37 247 257 https://dx.doi.org/10.1016/s0166-9834(00)80764-2
Yamazaki K. Sakakibara Y. Dong F. Shinjoh H. The remote oxidation of soot separated by ash deposits via silver-ceria composite catalysts Appl. Catal., A 2014 476 113 120 https://dx.doi.org/10.1016/j.apcata.2014.02.014
Orlando F. et al., The Environmental Photochemistry of Oxide Surfaces and the Nature of Frozen Salt Solutions: A New in Situ XPS Approach Top. Catal. 2016 59 591 604 https://dx.doi.org/10.1007/s11244-015-0515-5
Nečas D. Klapetek P. Gwyddion: an open-source software for SPM data analysis Open Phys. 2012 10 181 188 https://dx.doi.org/10.2478/s11534-011-0096-2
Barborini E. Piseri P. Milani P. A pulsed microplasma source of high intensity supersonic carbon cluster beams J. Phys. D: Appl. Phys. 1999 32 L105 L109 https://dx.doi.org/10.1088/0022-3727/32/21/102