[en] Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Disciplines :
Civil engineering
Author, co-author :
Gupta, Supriya
Patro, Ashmita
MITTAL, Yamini ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Dwivedi, Saurabh
Saket, Palak
Panja, Rupobrata
Saeed, Tanveer
Martínez, Fernando
Yadav, Asheesh Kumar
External co-authors :
yes
Language :
English
Title :
The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level
Abazarian, E., Gheshlaghi, R., Mahdavi, M.A., The effect of number and configuration of sediment microbial fuel cells on their performance in an open channel architecture. J. Power Sources 325 (2016), 739–744.
Abbas, S.Z., Rafatullah, M., Ismail, N., Syakir, M.I., A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective. Int. J. Energy Res., 41(9), 2017, 10.1002/er.3706.
Abbas, S.Z., Rafatullah, M., Khan, M.A., Siddiqui, M.R., Bioremediation and electricity generation by using open and closed sediment microbial fuel cells. Front. Microbiol., 9, 2019, 3348.
Abbassi, R., Yadav, A.K., Introduction to microbial fuel cells: challenges and opportunities. Integrated Microbial Fuel Cells for Wastewater Treatment, 2020, 10.1016/B978-0-12-817493-7.00001-1.
Aguirre-Sierra, A., Bacchetti-De Gregoris, T., Berná, A., Salas, J.J., Aragón, C., Esteve-Núñez, A., Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater. Environ. Sci.: Water Res. Technol., 2(6), 2016, 10.1039/c6ew00172f.
Allen, R.M., Bennetto, H.P., Microbial fuel-cells - electricity production from carbohydrates. Appl. Biochem. Biotechnol., 39–40(1), 1993, 10.1007/BF02918975.
Alvarez-Benítez, L., Silva-Martínez, S., Hernandez-Perez, A., Kamaraj, S.K., Abbas, S.Z., Alvarez-Gallegos, A., Quantification of internal resistance contributions of sediment microbial fuel cells using petroleum-contaminated sediment enriched with kerosene. Catalysts, 12(8), 2022, 10.3390/catal12080871.
An, J., Kim, B., Nam, J., Ng, H.Y., Chang, I.S., Comparison in performance of sediment microbial fuel cells according to depth of embedded anode. Bioresour. Technol. 127 (2013), 138–142.
An, J., Sim, J., Lee, H.-S., Control of voltage reversal in serially stacked microbial fuel cells through manipulating current: significance of critical current density. J. Power Sources 283 (2015), 19–23, 10.1016/j.jpowsour.2015.02.076.
Apollon, W., Luna-Maldonado, A.I., Kamaraj, S.K., Vidales-Contreras, J.A., Rodríguez-Fuentes, H., Gómez-Leyva, J.F., Aranda-Ruíz, J., Progress and recent trends in photosynthetic assisted microbial fuel cells: a review. Biomass Bioenergy, 148(November 2020), 2021, 10.1016/j.biombioe.2021.106028.
Arends, J.B.A., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., Rabaey, K., Boon, N., Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl. Microbiol. Biotechnol. 98:7 (2014), 3205–3217, 10.1007/s00253-013-5328-5.
Arends, J., Blondeel, E., Tennison, S.R., Boon, N., Verstraete, W., Suitability of granular carbon as an anode material for sediment microbial fuel cells. J. Soils Sediments 12:7 (2012), 1197–1206.
Arulmani, S.R.B., Gnanamuthu, H.L., Kandasamy, S., Govindarajan, G., Alsehli, M., Elfasakhany, A., Pugazhendhi, A., Zhang, H., Sustainable bioelectricity production from Amaranthus viridis and Triticum aestivum mediated plant microbial fuel cells with efficient electrogenic bacteria selections. Process Biochem. 107:May (2021), 27–37, 10.1016/j.procbio.2021.04.015.
Yadav, Asheesh Kumar, Design and development of novel constructed wetland cum microbial fuel cell for electricity production and wastewater treatment. 12th International Conference on Wetland Systems for Water Pollution Control (IWA), 2010, 4–10.
Azari, M.A.G., Gheshlaghi, R., Mahdavi, M.A., Abazarian, E., Electricity generation from river sediments using a partitioned open channel sediment microbial fuel cell. Int. J. Hydrog. Energy 42:8 (2017), 5252–5260.
Babanova, S., Jones, J., Phadke, S., Lu, M., Angulo, C., Garcia, J., Carpenter, K., Cortese, R., Chen, S., Phan, T., Bretschger, O., Continuous flow, large-scale, microbial fuel cell system for the sustained treatment of swine waste. Water Environ. Res., 92(1), 2020, 10.1002/wer.1183.
Bhagat, M.S., Mungray, A.K., Mungray, A.A., Performance of pilot-scale constructed wetland osmotic microbial fuel cell under different gravel conditions. Environ. Sci. Pollut. Res. 29:44 (2022), 66757–66767, 10.1007/s11356-022-20493-7.
Blatter, M., Delabays, L., Furrer, C., Huguenin, G., Cachelin, C.P., Fischer, F., Stretched 1000-L microbial fuel cell. J. Power Sources, 483, 2021, 10.1016/j.jpowsour.2020.229130.
Bose, D., Bose, A., Mitra, S., Jain, H., Parashar, P., Analysis of sediment-microbial fuel cell power production in series and parallel configurations. Nat. Environ. Pollut. Technol., 17(1), 2018.
Brunelli, D., Tosato, P., Rossi, M., Flora health wireless monitoring with plant-microbial fuel cell. Procedia Eng. 168 (2016), 1646–1650, 10.1016/j.proeng.2016.11.481.
Chaudhuri, S.K., Lovley, D.R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21(10), 2003, 10.1038/nbt867.
Cheng, T.H., Ching, K.B., Uttraphan, C., Heong, Y.M., Electrical energy production from plant biomass: an analysis model development for Pandanus amaryllifolius plant microbial fuel cell. Indones. J. Electr. Eng. Comput. Sci., 18(3), 2020, 10.11591/ijeecs.v18.i3.pp1163-1171.
Choi, J., Ahn, Y., Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. J. Environ. Manag., 130, 2013, 10.1016/j.jenvman.2013.08.065.
Chu, Y., Liu, W., Tan, Q., Yang, L., Chen, J., Ma, L., Zhang, Y., Wu, Z., He, F., Vertical-flow constructed wetland based on pyrite intensification: mixotrophic denitrification performance and mechanism. Bioresour. Technol., 347, 2022, 10.1016/j.biortech.2022.126710.
Corbella, C., Garfí, M., Puigagut, J., Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface flow constructed wetlands. Sci. Total Environ., 563–564, 2016, 10.1016/j.scitotenv.2016.03.170.
Corbella, C., Hartl, M., Fernandez-gatell, M., Puigagut, J., MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci. Total Environ., 660, 2019, 10.1016/j.scitotenv.2018.12.347.
Dai, M., Zhang, Y., Wu, Y., Sun, R., Zong, W., Kong, Q., Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system. J. Environ Chem. Eng., 9(5), 2021, 10.1016/j.jece.2021.106193.
Das, I., Ghangrekar, M.M., Satyakam, R., Srivastava, P., Khan, S., Pandey, H.N., On-site sanitary wastewater treatment system using 720-L stacked microbial fuel cell: case study. J. Hazard. Toxic Radioact. Waste, 24(3), 2020, 10.1061/(asce)hz.2153-5515.0000518.
Das, I., Ghangrekar, M.M., Seasonal performance variation of field scale 1500 L microbial fuel cell based bioelectric toilet: a case study. National Environmental Conference (NEC- 2019), CESE, IIT-Bombay, India, 2019.
de La Rosa, E.O., Castillo, J.V., Campos, M.C., Pool, G.R.B., Nuñez, G.B., Atoche, A.C., Aguilar, J.O., Plant microbial fuel cells-based energy harvester system for self-powered IoT applications. Sensors (Switzerland), 19(6), 2019, 10.3390/s19061378.
de Miranda, P.E.V., Science and engineering of hydrogen-based energy technologies: hydrogen production and practical applications in energy generation. Science and Engineering of Hydrogen-Based Energy Technologies: Hydrogen Production and Practical Applications in Energy Generation, 2018, 10.1016/C2017-0-00578-5.
De Schamphelaire, L., Boeckx, P., Verstraete, W., Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl. Microbiol. Biotechnol. 87:5 (2010), 1675–1687.
De Schamphelaire, L., Rabaey, K., Boeckx, P., Boon, N., Verstraete, W., Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microb. Biotechnol. 1:6 (2008), 446–462, 10.1111/j.1751-7915.2008.00042.x.
Deng, H., Chen, Z., Zhao, F., Energy from plants and microorganisms: progress in plant-microbial fuel cells. ChemSusChem, 5(6), 2012, 10.1002/cssc.201100257.
Dewan, A., Beyenal, H., Lewandowski, Z., Scaling up microbial fuel cells. Environ. Sci. Technol., 42(20), 2008, 10.1021/es800775d.
Di, L., Li, Y., Nie, L., Wang, S., Kong, F., Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution. J. Hazard. Mater., 394, 2020, 10.1016/j.jhazmat.2020.122542.
Do, M.H., Ngo, H.H., Guo, W.S., Liu, Y., Chang, S.W., Nguyen, D.D., Nghiem, L.D., Ni, B.J., Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci. Total Environ., 639, 2018, 10.1016/j.scitotenv.2018.05.136.
Doherty, L., Zhao, Y., Zhao, X., Wang, W., Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chem. Eng. J., 266, 2015, 10.1016/j.cej.2014.12.063.
Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., Liu, R., A review of a recently emerged technology: constructed wetland - microbial fuel cells. Water Res., 85, 2015, 10.1016/j.watres.2015.08.016.
Donovan, C., Dewan, A., Heo, D., Beyenal, H., Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol., 42(22), 2008, 10.1021/es801763g.
Donovan, C., Dewan, A., Heo, D., Lewandowski, Z., Beyenal, H., Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J. Power Sources 233 (2013), 79–85.
Du, Z., Li, H., Gu, T., A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., 25(5), 2007, 10.1016/j.biotechadv.2007.05.004.
Ebrahimi, A., Sivakumar, M., McLauchlan, C., Ansari, A., Vishwanathan, A.S., A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. J. Environ Chem. Eng., 9(1), 2021, 10.1016/j.jece.2020.105011.
Ewing, T., Ha, P.T., Babauta, J.T., Tang, N.T., Heo, D., Beyenal, H., Scale-up of sediment microbial fuel cells. J. Power Sources, 272, 2014, 10.1016/j.jpowsour.2014.08.070.
Fadzli, F.S., Bhawani, S.A., Adam Mohammad, R.E., Microbial fuel cell: recent developments in organic substrate use and bacterial electrode interaction. J. Chem., 2021, 2021, 10.1155/2021/4570388.
Fang, Z., Cao, X., Li, X., Wang, H., Li, X., Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment. Bioresour. Technol., 238, 2017, 10.1016/j.biortech.2017.04.075.
Fang, Z., Song, H.L., Cang, N., Li, X.N., Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour. Technol., 144, 2013, 10.1016/j.biortech.2013.06.073.
Fang, Z., Song, H.L., Cang, N., Li, X.N., Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens. Bioelectron., 68, 2015, 10.1016/j.bios.2014.12.047.
Feng, Y., Yang, Q., Wang, X., Liu, Y., Lee, H., Ren, N., Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour. Technol., 102(1), 2011, 10.1016/j.biortech.2010.05.059.
Franzetti, A., Daghio, M., Parenti, P., Truppi, T., Bestetti, G., Trasatti, S.P., Cristiani, P., Monod kinetics degradation of low concentration residual organics in membraneless microbial fuel cells. J. Electrochem. Soc., 164(3), 2017, 10.1149/2.0141703jes.
Fruehauf, H.M., Enzmann, F., Harnisch, F., Ulber, R., Holtmann, D., Microbial electrosynthesis—an inventory on technology readiness level and performance of different process variants. Biotechnol. J., 15(10), 2020, 2000066.
Gadkari, S., Gu, S., Sadhukhan, J., Two-dimensional mathematical model of an air-cathode microbial fuel cell with graphite fiber brush anode. J. Power Sources, 441, 2019, 10.1016/j.jpowsour.2019.227145.
Gatti, M.N., Milocco, R.H., A biofilm model of microbial fuel cells for engineering applications. Int. J. Energy Environ. Eng., 8(4), 2017, 10.1007/s40095-017-0249-1.
Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W., Tesfahunegn, A.A., Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour. Technol., 296, 2020, 10.1016/j.biortech.2019.122350.
Ghadge, A.N., Ghangrekar, M.M., Scott, K., Maximum anode chamber volume and minimum anode area for supporting electrogenesis in microbial fuel cells treating wastewater. J. Renewable Sustainable Energy, 8(4), 2016, 10.1063/1.4961587.
Ghadge, A.N., Jadhav, D.A., Ghangrekar, M.M., Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications. Environ. Prog. Sustain. Energy, 35(6), 2016, 10.1002/ep.12403.
Gilani, S.R., Yaseen, A., Zaidi, S.R.A., Zahra, M., Mahmood, Z., Photocurrent generation through plant microbial fuel cell by varying electrode materials. J. Chem. Soc. Pak. 38:1 (2016), 17–27.
Goel, S., From waste to watts in micro-devices: review on development of membraned and membraneless microfluidic microbial fuel cell. Appl. Mater. Today, 11, 2018, 10.1016/j.apmt.2018.03.005.
Gong, Y., Radachowsky, S.E., Wolf, M., Nielsen, M.E., Girguis, P.R., Reimers, C.E., Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ. Sci. Technol. 45:11 (2011), 5047–5053.
Goto, Y., Yoshida, N., Umeyama, Y., Yamada, T., Tero, R., Hiraishi, A., Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells. Front. Bioeng. Biotechnol. 3:APR (2015), 1–8, 10.3389/fbioe.2015.00042.
Guadarrama-Pérez, O., Gutiérrez-Macías, T., García-Sánchez, L., Guadarrama-Pérez, V.H., Estrada-Arriaga, E.B., Recent advances in constructed wetland-microbial fuel cells for simultaneous bioelectricity production and wastewater treatment: a review. Int. J. Energy Res., 43(10), 2019, 10.1002/er.4496.
Guan, C.Y., Tseng, Y.H., Tsang, D.C.W., Hu, A., Yu, C.P., Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. J. Hazard. Mater. 365 (2019), 137–145, 10.1016/j.jhazmat.2018.10.086.
Guan, C.Y., Yu, C.P., Evaluation of plant microbial fuel cells for urban green roofs in a subtropical metropolis. Sci. Total Environ., 765, 2021, 142786, 10.1016/j.scitotenv.2020.142786.
Gulamhussein, M., Randall, D.G., Design and operation of plant microbial fuel cells using municipal sludge. J. Water Process Eng., 38(September), 2020, 101653, 10.1016/j.jwpe.2020.101653.
Gupta, S., Srivastava, P., Yadav, A.K., Integration of microbial fuel cell into constructed wetlands: effects, applications, and future outlook. Integrated Microbial Fuel Cells for Wastewater Treatment, 2020, 10.1016/B978-0-12-817493-7.00013-8.
Gupta, S., Mittal, Y., Tamta, P., Srivastava, P., Yadav, A.K., Textile wastewater treatment using microbial fuel cell and coupled technology: a green approach for detoxification and bioelectricity generation. Integrated Microbial Fuel Cells for Wastewater Treatment, 2020, 10.1016/B978-0-12-817493-7.00004-7.
Gupta, S., Srivastava, P., Yadav, A.K., Simultaneous removal of organic matters and nutrients from high-strength wastewater in constructed wetlands followed by entrapped algal systems. Environ. Sci. Pollut. Res. 27:1 (2020), 1112–1117, 10.1007/s11356-019-06896-z.
Gupta, S., Srivastava, P., Patil, S.A., Yadav, A.K., A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: potential applications and challenges. Bioresour. Technol., 320, 2021, 10.1016/j.biortech.2020.124376.
Gupta, S., Nayak, A., Roy, C., Yadav, A.K., An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production. Chemosphere, 263, 2021, 10.1016/j.chemosphere.2020.128132.
Harnisch, F., Warmbier, R., Schneider, R., Schröder, U., Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry, 75(2), 2009, 10.1016/j.bioelechem.2009.03.001.
Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., Kuhn, A.J., Blok, C., Buisman, C.J.N., Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour. Technol. 101:10 (2010), 3541–3547, 10.1016/j.biortech.2009.12.124.
Helder, M., Strik, D.P., Hamelers, H.V., Buisman, C.J., The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnol. Biofuels, 5, 2012, 10.1186/1754-6834-5-70.
Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., Kuijken, R.C.P., Buisman, C.J.N., New plant-growth medium for increased power output of the plant-microbial fuel cell. Bioresour. Technol. 104 (2012), 417–423, 10.1016/j.biortech.2011.11.005.
Helder, M., Strik, D.P.B.T.B., Timmers, R.A., Raes, S.M.T., Hamelers, H.V.M., Buisman, C.J.N., Resilience of roof-top plant-microbial fuel cells during dutch winter. Biomass Bioenergy 51 (2013), 1–7, 10.1016/j.biombioe.2012.10.011.
Helder, M., Chen, W.S., Van Der Harst, E.J., Strik, D.P., Hamelers, H.B.V., Buisman, C.J., Potting, J., Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell. Biofuels Bioprod. Biorefin. 7:1 (2013), 52–64, 10.1002/bbb.
Hu, Z., Electricity generation by a baffle-chamber membraneless microbial fuel cell. J. Power Sources, 179(1), 2008, 10.1016/j.jpowsour.2007.12.094.
Huang, X., Duan, C., Duan, W., Sun, F., Cui, H., Zhang, S., Chen, X., Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): a review. J. Clean. Prod., 301, 2021, 10.1016/j.jclepro.2021.126951.
Ieropoulos, I.A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., Sanchez-Herranz, D., Greenman, J., Pee power urinal-microbial fuel cell technology field trials in the context of sanitation. Environ. Sci.: Water Res. Technol., 2(2), 2016, 10.1039/c5ew00270b.
Ieropoulos, I., Greenman, J., Melhuish, C., Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int. J. Energy Res., 32(13), 2008, 10.1002/er.1419.
Igboamalu, T.E., Needham-Clark, B., Matsena, M.T., Chirwa, E.M.N., Energy output from a dual chamber anoxic biofilm microbial fuel cell subjected to variation in substrate concentration. Chem. Eng. Trans., 76, 2019, 10.3303/CET1976232.
Jadhav, D.A., Carmona-Martínez, A.A., Chendake, A.D., Pandit, S., Pant, D., Modeling and optimization strategies towards performance enhancement of microbial fuel cells. Bioresour. Technol., 320, 2021, 10.1016/j.biortech.2020.124256.
Jadhav, D.A., Das, I., Ghangrekar, M.M., Pant, D., Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. J. Water Process Eng., 38, 2020, 10.1016/j.jwpe.2020.101566.
Jadhav, D.A., Mungray, A.K., Arkatkar, A., Kumar, S.S., Recent advancement in scaling-up applications of microbial fuel cells: from reality to practicability. Sustainable Energy Technol. Assess., 45, 2021, 10.1016/j.seta.2021.101226.
Jayasinghe, N., Mahadevan, R., Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells. IFAC Proceedings Volumes (IFAC-PapersOnline), 11, 2010, 10.3182/20100707-3-BE-2012.0050 (PART 1).
Ji, B., Zhao, Y., Li, Q., Yang, Y., Wei, T., Tang, C., Zhang, J., Ruan, W., Tai, Y., Interrelation between macrophytes roots and cathode in constructed wetland-microbial fuel cells: further evidence. Sci. Total Environ., 838, 2022, 156071, 10.1016/j.scitotenv.2022.156071.
Ji, B., Zhao, Y., Yang, Y., Li, Q., Man, Y., Dai, Y., Fu, J., Wei, T., Tai, Y., Zhang, X., Curbing per- and polyfluoroalkyl substances (PFASs): first investigation in a constructed wetland-microbial fuel cell system. Water Res., 230, 2023, 119530, 10.1016/j.watres.2022.119530.
Jiang, D., Li, B., Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs). Water Sci. Technol., 59(3), 2009, 10.2166/wst.2009.007.
Jiang, D., Li, B., Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem. Eng. J., 47(1–3), 2009, 10.1016/j.bej.2009.06.013.
Kabutey, F.T., Ding, J., Zhao, Q., Antwi, P., Quashie, F.K., Tankapa, V., Zhang, W., Pollutant removal and bioelectricity generation from urban river sediment using a macrophyte cathode sediment microbial fuel cell (mSMFC). Bioelectrochemistry 128 (2019), 241–251.
Kabutey, F.T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F.K., Wang, W., An overview of plant microbial fuel cells (PMFCs): configurations and applications. Renew. Sust. Energ. Rev., 110, 2019, 10.1016/j.rser.2019.05.016.
Kaewkannetra, P., Chiwes, W., Chiu, T.Y., Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel, 90(8), 2011, 10.1016/j.fuel.2011.03.031.
Karra, U., Muto, E., Umaz, R., Kölln, M., Santoro, C., Wang, L., Li, B., Performance evaluation of activated carbon-based electrodes with novel power management system for long-term benthic microbial fuel cells. Int. J. Hydrog. Energy 39:36 (2014), 21847–21856.
Karube, I., Ikemoto, H., Kajiwara, K., Tamiya, E., Matsuoka, H., Photochemical energy conversion using immobilized blue-green algae. J. Biotechnol., 4(2), 1986, 10.1016/0168-1656(86)90019-2.
Khuman, C.N., Bhowmick, G.D., Ghangrekar, M.M., Mitra, A., Effect of using a ceramic separator on the performance of hydroponic constructed wetland-microbial fuel cell. J. Hazard. Toxic Radioact. Waste, 24(3), 2020, 10.1061/(asce)hz.2153-5515.0000499.
Kumar, T., Naik, S., Jujjavarappu, S.E., A critical review on early-warning electrochemical system on microbial fuel cell-based biosensor for on-site water quality monitoring. Chemosphere, 291, 2022, 10.1016/j.chemosphere.2021.133098.
Lawan, J., Wichai, S., Chuaypen, C., Nuiyen, A., Phenrat, T., Constructed sediment microbial fuel cell for treatment of fat, oil, grease (FOG) trap effluent: role of anode and cathode chamber amendment, electrode selection, and scalability. Chemosphere, 286, 2022, 131619.
Lee, H.S., Parameswaran, P., Kato-Marcus, A., Torres, C.I., Rittmann, B.E., Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res., 42(6–7), 2008, 10.1016/j.watres.2007.10.036.
Lee, Y.S., An, J., Kim, B., Park, H., Kim, J., Chang, I.S., Increased power in sediment microbial fuel cell: facilitated mass transfer via a water-layer anode embedded in sediment. PLoS One, 10(12), 2015, e0145430.
Li, H., Tian, Y., Qu, Y., Qiu, Y., Liu, J., Feng, Y., A pilot-scale benthic microbial electrochemical system (BMES) for enhanced organic removal in sediment restoration. Sci. Rep., 7, 2017, 10.1038/srep39802.
Li, J., Li, H., Fu, Q., Liao, Q., Zhu, X., Kobayashi, H., Ye, D., Voltage reversal causes bioanode corrosion in microbial fuel cell stacks. Special Issue on The Asia Biohydrogen and Biorefinery Symposium (ABBS 2016), 5-8 October 2016, Jeju Island, South Korea, 42(45), 2017, 27649–27656, 10.1016/j.ijhydene.2017.05.221.
Li, M., Zhou, M., Tian, X., Tan, C., McDaniel, C.T., Hassett, D.J., Gu, T., Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol. Adv., 36(4), 2018, 10.1016/j.biotechadv.2018.04.010.
Linares, R.V., Domínguez-Maldonado, J., Rodríguez-Leal, E., Patrón, G., Castillo-Hernández, A., Miranda, A., Romero, D.D., Moreno-Cervera, R., Camara-chale, G., Borroto, C.G., Alzate-Gaviria, L., Scale up of microbial fuel cell stack system for residential wastewater treatment in continuous mode operation. Water (Switzerland), 11(2), 2019, 10.3390/w11020217.
Liu, B., Ji, M., Zhai, H., Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: effects of anode locations. Chemosphere 209 (2018), 739–747, 10.1016/j.chemosphere.2018.06.122.
Liu, F., Sun, L., Wan, J., Shen, L., Yu, Y., Hu, L., Zhou, Y., Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. J. Environ. Sci. (China), 89, 2020, 10.1016/j.jes.2019.08.015.
Liu, H., Cheng, S., Logan, B.E., Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol., 39(2), 2005, 10.1021/es048927c.
Liu, S., Song, H., Li, X., Yang, F., Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int. J. Photoenergy, 2013, 2013, 10.1155/2013/172010.
Liu, S., Song, H., Wei, S., Yang, F., Li, X., Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems. Bioresour. Technol., 166, 2014, 10.1016/j.biortech.2014.05.104.
Liu, S.-H., Su, Y.-H., Chen, C.-C., Lin, C.-W., Huang, W.-J., Simultaneous enhancement of copper removal and power production using a sediment microbial fuel cell with oxygen separation membranes. Environ. Technol. Innov., 26, 2022, 102369.
Liu, Z., Liu, J., Zhang, S., Su, Z., Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochem. Eng. J., 45(3), 2009, 10.1016/j.bej.2009.03.011.
Logan, B., Cheng, S., Watson, V., Estadt, G., Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol., 41(9), 2007, 10.1021/es062644y.
Logan, B.E., Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85(6), 2010, 10.1007/s00253-009-2378-9.
Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K., Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40(17), 2006, 10.1021/es0605016.
Lowy, D.A., Tender, L.M., Zeikus, J.G., Park, D.H., Lovley, D.R., Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosens. Bioelectron. 21:11 (2006), 2058–2063.
Lu, R., Chen, Y., Wu, J., Chen, D., Wu, Z., Xiao, E., In situ COD monitoring with use of a hybrid of constructed wetland-microbial fuel cell. Water Res., 210, 2022, 10.1016/j.watres.2021.117957.
Lu, Z., Yin, D., Chen, P., Wang, H., Yang, Y., Huang, G., Cai, L., Zhang, L., Power-generating trees: direct bioelectricity production from plants with microbial fuel cells. Appl. Energy, 268(April), 2020, 115040, 10.1016/j.apenergy.2020.115040.
Ma, F., Yin, Y., Li, M., Start-up process modelling of sediment microbial fuel cells based on data driven. Math. Probl. Eng., 2019, 2019, 10.1155/2019/7403732.
Maddalwar, S., Kumar Nayak, K., Kumar, M., Singh, L., Plant microbial fuel cell: opportunities, challenges, and prospects. Bioresour. Technol., 341, 2021, 10.1016/j.biortech.2021.125772.
Majumder, D., Maity, J.P., Chen, C.-Y., Chen, C.-C., Yang, T.-C., Chang, Y.-F., Hsu, D.-W., Chen, H.-R., Electricity generation with a sediment microbial fuel cell equipped with an air-cathode system using photobacterium. Int. J. Hydrog. Energy 39:36 (2014), 21215–21222.
Marcus, A.K., Torres, C.I., Rittmann, B.E., Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng., 98(6), 2007, 10.1002/bit.21533.
Massaglia, G., Gerosa, M., Agostino, V., Cingolani, A., Sacco, A., Saracco, G., Margaria, V., Quaglio, M., Fluid dynamic modeling for microbial fuel cell based biosensor optimization. Fuel Cells, 17(5), 2017, 10.1002/fuce.201700026.
Mathuriya, A.S., Yakhmi, J.V., Microbial fuel cells - applications for generation of electrical power and beyond. Crit. Rev. Microbiol., 42(1), 2016, 10.3109/1040841X.2014.905513.
Md Khudzari, J., Gariépy, Y., Kurian, J., Tartakovsky, B., Raghavan, G.S.V., Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochem. Eng. J. 141 (2019), 190–199, 10.1016/j.bej.2018.10.012.
Md Khudzari, J., Kurian, J., Gariépy, Y., Tartakovsky, B., Raghavan, G.S.V., Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass Bioenergy 109:December 2017 (2018), 1–9, 10.1016/j.biombioe.2017.12.013.
Min, B., Kim, J.R., Oh, S.E., Regan, J.M., Logan, B.E., Electricity generation from swine wastewater using microbial fuel cells. Water Res., 39(20), 2005, 10.1016/j.watres.2005.09.039.
Mittal, Y., Dash, S., Srivastava, P., Mishra, P.M., Aminabhavi, T.M., Yadav, A.K., Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: a new design for enhanced performance. Chem. Eng. J., 427, 2022, 10.1016/j.cej.2021.131856.
Mittal, Y., Noori, M.T., Saeed, T., Yadav, A.K., Influence of evapotranspiration on wastewater treatment and electricity generation performance of constructed wetland integrated microbial fuel cell. J. Water Process. Eng., 53, 2023, 103580.
Mittal, Y., Srivastava, P., Kumar, N., Kumar, M., Singh, S.K., Martinez, F., Yadav, A.K., Ultra-fast and low-cost electroactive biochar production for electroactive-constructed wetland applications: a circular concept for plant biomass utilization. Chem. Eng. J., 452, 2023, 138587, 10.1016/j.cej.2022.138587.
Moqsud, M.A., Yoshitake, J., Bushra, Q.S., Hyodo, M., Omine, K., Strik, D., Compost in plant microbial fuel cell for bioelectricity generation. Waste Manag., 36, 2015, 10.1016/j.wasman.2014.11.004.
Morris, J.M., Jin, S., Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J. Hazard. Mater. 213 (2012), 474–477.
Mu, C., Wang, L., Wang, L., Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production. Environ. Sci. Pollut. Res., 27(20), 2020, 10.1007/s11356-020-08982-z.
Mu, C., Wang, L., Wang, L., Removal of Cr(VI) and electricity production by constructed wetland combined with microbial fuel cell (CW-MFC): influence of filler media. J. Clean. Prod., 320, 2021, 10.1016/j.jclepro.2021.128860.
Nath, D., Ghangrekar, M.M., Plant secondary metabolites induced electron flux in microbial fuel cell: investigation from laboratory-to-field scale. Sci. Rep., 10(1), 2020, 10.1038/s41598-020-74092-y.
Neethu, B., Ghangrekar, M.M., Electricity generation through a photo sediment microbial fuel cell using algae at the cathode. Water Sci. Technol. 76:12 (2017), 3269–3277.
Nitisoravut, R., Regmi, R., Plant microbial fuel cells: a promising biosystems engineering. Renew. Sust. Energ. Rev., 76, 2017, 10.1016/j.rser.2017.03.064.
Obileke, K.C., Onyeaka, H., Meyer, E.L., Nwokolo, N., Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review. Electrochem. Commun., 125, 2021, 10.1016/j.elecom.2021.107003.
Oliveira, V.B., Simões, M., Melo, L.F., Pinto, A.M.F.R., Overview on the developments of microbial fuel cells. In. Biochem. Eng. J., 73, 2013, 10.1016/j.bej.2013.01.012.
Oon, Y.L., Ong, S.A., Ho, L.N., Wong, Y.S., Dahalan, F.A., Oon, Y.S., Lehl, H.K., Thung, W.E., Nordin, N., Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour. Technol., 224, 2017, 10.1016/j.biortech.2016.10.079.
Oon, Y.L., Ong, S.A., Ho, L.N., Wong, Y.S., Oon, Y.S., Lehl, H.K., Thung, W.E., Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresour. Technol., 186, 2015, 10.1016/j.biortech.2015.03.014.
Ortiz-Martínez, V.M., Salar-García, M.J., de los Ríos, A.P., Hernández-Fernández, F.J., Egea, J.A., Lozano, L.J., Developments in microbial fuel cell modeling. Chem. Eng. J., 271, 2015, 10.1016/j.cej.2015.02.076.
Osorio-De-La-Rosa, E., Vazquez-Castillo, J., Castillo-Atoche, A., Heredia-Lozano, J., Castillo-Atoche, A., Becerra-Nunez, G., Barbosa, R., Arrays of plant microbial fuel cells for implementing self-sustainable wireless sensor networks. IEEE Sensors J., 21(2), 2021, 10.1109/JSEN.2020.3019986.
Pamintuan, K.R.S., Gonzales, A.J.S., Estefanio, B.M.M., Bartolo, B.L.S., Simultaneous phytoremediation of Ni2+ and bioelectricity generation in a plant-microbial fuel cell assembly using water hyacinth (Eichhornia crassipes). IOP Conf. Ser. Earth Environ. Sci., 191(1), 2018, 10.1088/1755-1315/191/1/012093.
Pant, D., van Bogaert, G., Diels, L., Vanbroekhoven, K., A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101(6), 2010, 10.1016/j.biortech.2009.10.017.
Peñacoba-Antona, L., Gómez-Delgado, M., Esteve-Núñez, A., Multi-criteria evaluation and sensitivity analysis for the optimal location of constructed wetlands (METland) at oceanic and mediterranean areas. Int. J. Environ. Res. Public Health, 18(10), 2021, 10.3390/ijerph18105415.
Peñacoba-Antona, L., Senán-Salinas, J., Aguirre-Sierra, A., Letón, P., Salas, J.J., García-Calvo, E., Esteve-Núñez, A., Assessing METland® design and performance through LCA: techno-environmental study with multifunctional unit perspective. Front. Microbiol., 12, 2021, 10.3389/fmicb.2021.652173.
Pepé Sciarria, T., Tenca, A., D'Epifanio, A., Mecheri, B., Merlino, G., Barbato, M., Borin, S., Licoccia, S., Garavaglia, V., Adani, F., Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresour. Technol., 147, 2013, 10.1016/j.biortech.2013.08.033.
Picioreanu, C., Head, I.M., Katuri, K.P., van Loosdrecht, M.C.M., Scott, K., A computational model for biofilm-based microbial fuel cells. Water Res., 41(13), 2007, 10.1016/j.watres.2007.04.009.
Prasad, J., Tripathi, R.K., Energy harvesting from sediment microbial fuel cell using different electrodes. Int. J. ChemTech Res. 7:1 (2018), 219–225.
Prasad, J., Tripathi, R.K., Scale-up and control the voltage of sediment microbial fuel cell for charging a cell phone. Biosens. Bioelectron., 172, 2021, 10.1016/j.bios.2020.112767.
Rabaey, K., Angenent, L., Schroder, U., Keller, J., Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Applicaiton. 2010.
Radeef, A.Y., Ismail, Z.Z., Polarization model of microbial fuel cell for treatment of actual potato chips processing wastewater associated with power generation. J. Electroanal. Chem., 836, 2019, 10.1016/j.jelechem.2019.02.001.
Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., Oh, S., Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Engineering. Alex. Eng. J., 54, 2015.
Rahimnejad, M., Jafary, T., Ghoreyshi, T.T., Najafpour, G., Effect of glucose concentration on the performance of microbial fuel cell. Current generation from MFC View project CO2 conversion View project. https://www.researchgate.net/publication/298787639, 2010.
Regmi, R., Nitisoravut, R., Charoenroongtavee, S., Yimkhaophong, W., Phanthurat, O., Earthen pot–plant microbial fuel cell powered by Vetiver for bioelectricity production and wastewater treatment. CLEAN–Soil, Air, Water, 46(3), 2018, 1700193.
Reimers, C.E., Girguis, P., Stecher, H.A., Tender, L.M., Ryckelynck, N., Whaling, P., Microbial fuel cell energy from an ocean cold seep. Geobiology, 4(2), 2006, 10.1111/j.1472-4669.2006.00071.x.
Ren, Y., Pan, D., Li, X., Fu, F., Zhao, Y., Wang, X., Effect of polyaniline-graphene nanosheets modified cathode on the performance of sediment microbial fuel cell. J. Chem. Technol. Biotechnol. 88:10 (2013), 1946–1950.
Rengasamy, K., Berchmans, S., Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts acetobacter aceti and gluconobacter roseus. Bioresour. Technol., 104, 2012, 10.1016/j.biortech.2011.10.092.
Rossi, M., Tosato, P., Gemma, L., Torquati, L., Catania, C., Camalò, S., Brunelli, D., Long range wireless sensing powered by plant-microbial fuel cell. Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017, 2017, 1651–1654, 10.23919/DATE.2017.7927258.
Rossi, R., Hur, A.Y., Page, M.A., Thomas, A.O.B., Butkiewicz, J.J., Jones, D.W., Baek, G., Saikaly, P.E., Cropek, D.M., Logan, B.E., Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Res., 215, 2022, 10.1016/j.watres.2022.118208.
Roy, M., Aryal, N., Zhang, Y., Patil, S.A., Pant, D., Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization. Curr. Opin. Green Sustain. Chem., 35, 2022, 100605.
Saba, B., Christy, A.D., Yu, Z., Co, A.C., Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew. Sust. Energ. Rev. 73 (2017), 75–84.
Saba, B., Khan, M., Christy, A.D., Kjellerup, B.V., Microbial phyto-power systems – a sustainable integration of phytoremediation and microbial fuel cells. Bioelectrochemistry, 127, 2019, 10.1016/j.bioelechem.2018.12.005.
Sacco, N.J., Figuerola, E.L.M., Pataccini, G., Bonetto, M.C., Erijman, L., Cortón, E., Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresour. Technol. 126 (2012), 328–335.
Saeed, T., Miah, M.J., Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands: media and flood-dry period ratio. Chem. Eng. J., 411, 2021, 10.1016/j.cej.2021.128507.
Saeed, T., Yadav, A.K., Miah, M.J., Treatment performance of stone dust packed tidal flow electroactive and normal constructed wetlands: influence of contact time, plants, and electrodes. J. Water Process Eng., 50, 2022, 103257, 10.1016/j.jwpe.2022.103257.
Saeed, T., Yadav, A.K., Miah, M.J., Influence of electrodes and media saturation in horizontal flow wetlands employed for municipal sewage treatment: a comparative study. Environ. Technol. Innov., 25, 2022, 10.1016/j.eti.2021.102160.
Saeed, T., Miah, M.J., Kumar Yadav, A., Free-draining two-stage microbial fuel cell integrated constructed wetlands development using biomass, construction, and industrial wastes as filter materials: performance assessment. Chem. Eng. J., 437, 2022, 10.1016/j.cej.2022.135433.
Saeed, T., Miah, M.J., Yadav, A.K., Development of electrodes integrated hybrid constructed wetlands using organic, construction, and rejected materials as filter media: landfill leachate treatment. Chemosphere, 303, 2022, 135273, 10.1016/j.chemosphere.2022.135273.
Saeed, T., Majed, N., Kumar Yadav, A., Hasan, A., Jihad Miah, M., Constructed wetlands for drained wastewater treatment and sludge stabilization: role of plants, microbial fuel cell and earthworm assistance. Chem. Eng. J., 430, 2022, 10.1016/j.cej.2021.132907.
Sajana, T.K., Ghangrekar, M.M., Mitra, A., Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell. Water Sci. Technol. 68:3 (2013), 537–543.
Sajana, T.K., Ghangrekar, M.M., Mitra, A., Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquac. Eng. 57 (2013), 101–107.
Saket, P., Mittal, Y., Bala, K., Joshi, A., Kumar Yadav, A., Innovative constructed wetland coupled with microbial fuel cell for enhancing diazo dye degradation with simultaneous electricity generation. Bioresour. Technol., 345, 2022, 10.1016/j.biortech.2021.126490.
Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I., Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources, 2017, 356, 10.1016/j.jpowsour.2017.03.109.
Sarma, P.J., Mohanty, K., Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. J. Biosci. Bioeng. 126:3 (2018), 404–410, 10.1016/j.jbiosc.2018.03.009.
Saz, Ç., Türe, C., Türker, O.C., Yakar, A., Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater. Environ. Sci. Pollut. Res., 25(9), 2018, 10.1007/s11356-018-1208-y.
Schievano, A., Colombo, A., Grattieri, M., Trasatti, S.P., Liberale, A., Tremolada, P., Pino, C., Cristiani, P., Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. J. Power Sources, 340, 2017, 10.1016/j.jpowsour.2016.11.037.
Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J.B., Browning, D., Power from marine sediment fuel cells: the influence of anode material. J. Appl. Electrochem. 38:9 (2008), 1313–1319.
Seelam, J.S., Pant, D., Patil, S.A., Kapadnis, B.P., Biological electricity production from wastes and wastewaters. Microbial Factories: Biofuels, Waste Treatment, Volume 1, 2016, 10.1007/978-81-322-2598-0_10.
Shaikh, R., Rizvi, A., Quraishi, M., Pandit, S., Mathuriya, A.S., Gupta, P.K., Singh, J., Prasad, R., Bioelectricity production using plant-microbial fuel cell: present state of art. S. Afr. J. Bot., 140, 2021, 10.1016/j.sajb.2020.09.025.
Sheikhyousefi, P.R., Esfahany, M.N., Colombo, A., Franzetti, A., Trasatti, S.P., Cristiani, P., Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water. Appl. Energy 192 (2017), 457–465.
Shen, X., Zhang, J., Liu, D., Hu, Z., Liu, H., Enhance performance of microbial fuel cell coupled surface flow constructed wetland by using submerged plants and enclosed anodes. Chem. Eng. J., 351, 2018, 10.1016/j.cej.2018.06.117.
Shi, Z., Luo, H., Li, Z., Xiang, Y., Wu, Y., Yang, K., Guo, F., Small boreholes embedded in the sediment layers make big difference in performance of sediment microbial fuel cells: bioelectricity generation and microbial community. Int. J. Hydrog. Energy 46:58 (2021), 30124–30134.
Shukla, A.K., Suresh, P., Berchmans, S., Rajendran, A., Biological fuel cells and their applications. Curr. Sci., 87(4), 2004.
Song, N., Yan, Z., Xu, H., Yao, Z., Wang, C., Chen, M., Zhao, Z., Peng, Z., Wang, C., Jiang, H.-L., Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci. Total Environ. 673 (2019), 272–280.
Song, T., Tan, W., Wu, X., Zhou, C.C., Effect of graphite felt and activated carbon fiber felt on performance of freshwater sediment microbial fuel cell. J. Chem. Technol. Biotechnol. 87:10 (2012), 1436–1440.
Song, T., Wu, X., Zhou, C.C., Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells. Appl. Biochem. Biotechnol. 170:5 (2013), 1241–1250.
Song, T.-S., Yan, Z.-S., Zhao, Z.-W., Jiang, H.-L., Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosyst. Eng. 34:5 (2011), 621–627.
Sonu, K., Sogani, M., Syed, Z., Integrated constructed wetland-microbial fuel cell using biochar as wetland matrix: influence on power generation and textile wastewater treatment. ChemistrySelect, 6(32), 2021, 10.1002/slct.202102033.
Sophia, A.C., Sreeja, S., Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technol. Assess. 21 (2017), 59–66, 10.1016/j.seta.2017.05.001.
Srivastava, P., Yadav, A.K., Garaniya, V., Lewis, T., Abbassi, R., Khan, S.J., Electrode dependent anaerobic ammonium oxidation in microbial fuel cell integrated hybrid constructed wetlands: a new process. Sci. Total Environ., 698, 2020, 10.1016/j.scitotenv.2019.134248.
Srivastava, P., Abbassi, R., Garaniya, V., Lewis, T., Yadav, A.K., Performance of pilot-scale horizontal subsurface flow constructed wetland coupled with a microbial fuel cell for treating wastewater. J. Water Process Eng., 33, 2020, 10.1016/j.jwpe.2019.100994.
Srivastava, P., Abbassi, R., Kumar Yadav, A., Garaniya, V., Kumar, N., Khan, S.J., Lewis, T., Enhanced chromium(VI) treatment in electroactive constructed wetlands: influence of conductive material. J. Hazard. Mater., 387, 2020, 10.1016/j.jhazmat.2019.121722.
Srivastava, P., Abbassi, R., Yadav, A.K., Garaniya, V., Asadnia, M., A review on the contribution of electron flow in electroactive wetlands: electricity generation and enhanced wastewater treatment. Chemosphere, 254, 2020, 10.1016/j.chemosphere.2020.126926.
Srivastava, P., Abbassi, R., Yadav, A., Garaniya, V., Asadnia, M., Lewis, T., Khan, S.J., Influence of applied potential on treatment performance and clogging behaviour of hybrid constructed wetland-microbial electrochemical technologies. Chemosphere, 284, 2021, 10.1016/j.chemosphere.2021.131296.
Srivastava, P., Abbassi, R., Yadav, A.K., Garaniya, V., Lewis, T., Zhao, Y., Aminabhavi, T., Interrelation between Sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands. J. Hazard. Mater., 419, 2021, 10.1016/j.jhazmat.2021.126417.
Srivastava, P., Belford, A., Abbassi, R., Asadnia, M., Garaniya, V., Yadav, A.K., Low-power energy harvester from constructed wetland-microbial fuel cells for initiating a self-sustainable treatment process. Sustainable Energy Technol. Assess., 46, 2021, 10.1016/j.seta.2021.101282.
Srivastava, P., Dwivedi, S., Kumar, N., Abbassi, R., Garaniya, V., Yadav, A.K., Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems. Bioresour. Technol., 244, 2017, 10.1016/j.biortech.2017.08.026.
Srivastava, P., Gupta, S., Garaniya, V., Abbassi, R., Yadav, A.K., Up to 399 mV bioelectricity generated by a rice paddy-planted microbial fuel cell assisted with a blue-green algal cathode. Environ. Chem. Lett., 0123456789, 2018, 10.1007/s10311-018-00824-2.
Srivastava, P., Mittal, Y., Gupta, S., Abbassi, R., Garaniya, V., Recent progress in biosensors for wastewater monitoring and surveillance. Artificial Intelligence and Data Science in Environmental Sensing, 2022, 10.1016/B978-0-323-90508-4.00010-1.
Srivastava, P., Gupta, S., Mittal, Y., Dhal, N.K., Saeed, T., Martínez, F., Yadav, A.K., Chapter 23 - constructed wetlands and its coupling with other technologies from lab to field scale for enhanced wastewater treatment and resource recovery. Mungray, A., Mungray, A., Sonawane, S., Sonawane, S., (eds.) Novel Approaches Towards Wastewater Treatment and Resource Recovery Technologies, 2022, Elsevier, 419–446, 10.1016/B978-0-323-90627-2.00019-8.
Srivastava, P., Yadav, A.K., Garaniya, V., Abbassi, R., Constructed wetland coupled microbial fuel cell technology: development and potential applications. Biomass, Biofuels, Biochemicals: Microbial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and Remediation, 2018, Elsevier, 1021–1036, 10.1016/B978-0-444-64052-9.00042-X.
Srivastava, P., Yadav, A.K., Mishra, B.K., The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresour. Technol., 195, 2015, 10.1016/j.biortech.2015.05.072.
Strik, D.P.B.T.B., Hamelers, H.V.M., Snel, J.F.H., Buisman, C.J.N., Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res., 32(9), 2008, 10.1002/er.1397.
Sudirjo, E., Buisman, C.J.N., Strik, D.P.B.T.B., Activated carbon mixed with marine sediment is suitable as bioanode material for Spartina anglica sediment/plant microbial fuel cell: plant growth, electricity generation, and spatial microbial community diversity. Water (Switzerland), 11(9), 2019, 10.3390/w11091810.
Sudirjo, E., De Jager, P., Buisman, C.J.N., Strik, D.P.B.T.B., Performance and long distance data acquisition via LoRa technology of a tubular plant microbial fuel cell located in a paddy field in West Kalimantan, Indonesia. Sensors (Switzerland), 19(21), 2019, 10.3390/s19214647.
Sugnaux, M., Savy, C., Cachelin, C.P., Hugenin, G., Fischer, F., Simulation and resolution of voltage reversal in microbial fuel cell stack. Bioresour. Technol., 238, 2017, 10.1016/j.biortech.2017.04.072.
Suor, D., Ma, J., Wang, Z., Li, Y., Tang, J., Wu, Z., Enhanced power production from waste activated sludge in rotating-cathode microbial fuel cells: the effects of aquatic worm predation. Chem. Eng. J. 248 (2014), 415–421.
Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., Watanabe, K., Factors affecting electric output from rice-paddy microbial fuel cells. Biosci. Biotechnol. Biochem. 74:6 (2010), 1271–1273, 10.1271/bbb.90852.
Tang, C., Zhao, Y., Kang, C., Yang, Y., Morgan, D., Xu, L., Towards concurrent pollutants removal and high energy harvesting in a pilot-scale CW-MFC: insight into the cathode conditions and electrodes connection. Chem. Eng. J., 373, 2019, 10.1016/j.cej.2019.05.035.
Tapia, N.F., Rojas, C., Bonilla, C.A., Vargas, I.T., Evaluation of sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecol. Eng. 108:August (2017), 203–210, 10.1016/j.ecoleng.2017.08.017.
Tapia, N.F., Rojas, C., Bonilla, C.A., Vargas, I.T., A new method for sensing soil water content in green roofs using plant microbial fuel cells. Sensors (Switzerland), 18(1), 2018, 10.3390/s18010071.
Taşkan, B., Taşkan, E., Hasar, H., Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode. Environ. Prog. Sustain. Energy, 39(5), 2020, e13407.
Tender, L.M., Gray, S.A., Groveman, E., Lowy, D.A., Kauffman, P., Melhado, J., Tyce, R.C., Flynn, D., Petrecca, R., Dobarro, J., The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J. Power Sources 179:2 (2008), 571–575.
Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., Lovley, D.R., Harnessing microbially generated power on the seafloor. Nat. Biotechnol., 20(8), 2002, 10.1038/nbt716.
Teoh, T.P., Ong, S.A., Ho, L.N., Wong, Y.S., Oon, Y.L., Oon, Y.S., Tan, S.M., Thung, W.E., Up-flow constructed wetland-microbial fuel cell: influence of floating plant, aeration and circuit connection on wastewater treatment performance and bioelectricity generation. J. Water Process Eng., 36, 2020, 10.1016/j.jwpe.2020.101371.
Thomas, Y.R.J., Picot, M., Carer, A., Berder, O., Sentieys, O., Barrière, F., A single sediment-microbial fuel cell powering a wireless telecommunication system. J. Power Sources, 241, 2013, 10.1016/j.jpowsour.2013.05.016.
Timmers, R.A., Strik, D.P.B.T.B., Hamelers, H.V.M., Buisman, C.J.N., Characterization of the internal resistance of a plant microbial fuel cell. Electrochim. Acta 72 (2012), 165–171, 10.1016/j.electacta.2012.04.023.
Timmers, R.A., Strik, D.P.B.T.B., Arampatzoglou, C., Buisman, C.J.N., Hamelers, H.V.M., Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresour. Technol., 108, 2012, 10.1016/j.biortech.2011.10.088.
Timmers, R.A., Strik, D.P.B.T.B., Hamelers, H.V.M., Buisman, C.J.N., Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl. Microbiol. Biotechnol. 86:3 (2010), 973–981, 10.1007/s00253-010-2440-7.
Timmers, R.A., Strik, D.P., Hamelers, H.V., Buisman, C.J., Increase of power output by change of ion transport direction in a plant microbial fuel cell. Int. J. Energy Res. 37:9 (2013), 1103–1111, 10.1002/er.
Tongphanpharn, N., Chou, C.H., Guan, C.Y., Yu, C.P., Plant microbial fuel cells with Oryza rufipogon and Typha orientalis for remediation of cadmium contaminated soil. Environ. Technol. Innov., 24, 2021, 102030, 10.1016/j.eti.2021.102030.
Trapero, J.R., Horcajada, L., Linares, J.J., Lobato, J., Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy, 185, 2017, 10.1016/j.apenergy.2016.10.109.
Uria-Molto, N., Costa, R.D., Nunziata, C., Santiago, S., Guirado, G., Muñoz-Berbel, X., Kowalski, L., Self-contained and integral microbial fuel cells as portable and sustainable energy sources for low-power field devices. Electron. J. Biotechnol. 57 (2022), 44–51, 10.1016/j.ejbt.2022.04.004.
Villaseñor Camacho, J., Rodríguez Romero, L., Fernández Marchante, C.M., Fernández Morales, F.J., Rodrigo Rodrigo, M.A., The salinity effects on the performance of a constructed wetland-microbial fuel cell. Ecol. Eng., 107, 2017, 10.1016/j.ecoleng.2017.06.056.
Villaseñor, J., Capilla, P., Rodrigo, M.A., Cañizares, P., Fernández, F.J., Operation of a horizontal subsurface flow constructed wetland - microbial fuel cell treating wastewater under different organic loading rates. Water Res., 47(17), 2013, 10.1016/j.watres.2013.09.005.
Walter, X.A., Merino-Jiménez, I., Greenman, J., Ieropoulos, I., PEE POWER® urinal II - urinal scale-up with microbial fuel cell scale-down for improved lighting. J. Power Sources, 392, 2018, 10.1016/j.jpowsour.2018.02.047.
Walter, X.A., You, J., Winfield, J., Bajarunas, U., Greenman, J., Ieropoulos, I.A., From the lab to the field: self-stratifying microbial fuel cells stacks directly powering lights. Appl. Energy, 277, 2020, 10.1016/j.apenergy.2020.115514.
Wang, X., Cheng, S., Feng, Y., Merrill, M.D., Saito, T., Logan, B.E., Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43(17), 2009, 10.1021/es900997w.
Wang, D.-B., Song, T.-S., Guo, T., Zeng, Q., Xie, J., Electricity generation from sediment microbial fuel cells with algae-assisted cathodes. Int. J. Hydrog. Energy 39:25 (2014), 13224–13230.
Wang, C.-T., Lee, Y.-C., Ou, Y.-T., Yang, Y.-C., Chong, W.-T., Sangeetha, T., Yan, W.-M., Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells. Appl. Energy 204 (2017), 620–625.
Wang, J., Song, X., Wang, Y., Zhao, Z., Wang, B., Yan, D., Effects of electrode material and substrate concentration on the bioenergy output and wastewater treatment in air-cathode microbial fuel cell integrating with constructed wetland. Ecol. Eng., 99, 2017, 10.1016/j.ecoleng.2016.11.015.
Wang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F., Lv, Y., Yan, D., Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Sci. Total Environ., 607–608, 2017, 10.1016/j.scitotenv.2017.06.243.
Wang, J., Song, X., Li, Q., Bai, H., Zhu, C., Weng, B., Yan, D., Bai, J., Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI. Water Res., 150, 2019, 10.1016/j.watres.2018.11.075.
Wang, X., Tian, Y., Liu, H., Zhao, X., Peng, S., The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. Sci. Total Environ., 656, 2019, 10.1016/j.scitotenv.2018.11.328.
Wang, X., Tian, Y., Liu, H., Zhao, X., Wu, Q., Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland–microbial fuel cell systems. Bioresour. Technol., 271, 2019, 10.1016/j.biortech.2018.09.039.
Wang, S., Kong, F., Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell. Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water, 2022, 10.1016/B978-0-323-85763-5.00009-X.
Wastew, U., José Salas Centa, J., Esteve-Núñez, A., IWA specialist conference on wetland systems for water pollution control 2018 integrating microbial electrochemical technologies (MET) to constructed wetlands to treat. https://www.researchgate.net/publication/330397721, 2018.
Wei, M., Rakoczy, J., Vogt, C., Harnisch, F., Schumann, R., Richnow, H.H., Enhancement and monitoring of pollutant removal in a constructed wetland by microbial electrochemical technology. Bioresour. Technol., 196, 2015, 10.1016/j.biortech.2015.07.111.
Wen, H., Zhu, H., Yan, B., Shutes, B., Yu, X., Cheng, R., Chen, X., Wang, X., Constructed wetlands integrated with microbial fuel cells for COD and nitrogen removal affected by plant and circuit operation mode. Environ. Sci. Pollut. Res., 28(3), 2021, 10.1007/s11356-020-10632-3.
Wen, Q., Wu, Y., Zhao, L., Sun, Q., Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell. Fuel, 89(7), 2010, 10.1016/j.fuel.2009.11.004.
Wetser, K., Sudirjo, E., Buisman, C.J.N., Strik, D.P.B.T.B., Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Appl. Energy 137 (2015), 151–157, 10.1016/j.apenergy.2014.10.006.
Wetser, K., Liu, J., Buisman, C., Strik, D., Plant microbial fuel cell applied in wetlands: spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass Bioenergy 83 (2015), 543–550, 10.1016/j.biombioe.2015.11.006.
Wu, D., Yang, L., Gan, L., Chen, Q., Li, L., Chen, X., Wang, X., Guo, L., Miao, A., Potential of novel wastewater treatment system featuring microbial fuel cell to generate electricity and remove pollutants. Ecol. Eng., 84, 2015, 10.1016/j.ecoleng.2015.09.068.
Wu, M.S., Xu, X., Zhao, Q., Wang, Z.Y., Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells. RSC Adv. 7:84 (2017), 53433–53438.
Wu, S., Lv, T., Lu, Q., Ajmal, Z., Dong, R., Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: evaluation of nitrogen removal, electricity generation, and bacterial community response. Sci. Total Environ., 580, 2017, 10.1016/j.scitotenv.2016.11.138.
Wu, M., Xu, X., Lu, K., Li, X., Effects of the presence of nanoscale zero-valent iron on the degradation of polychlorinated biphenyls and total organic carbon by sediment microbial fuel cell. Sci. Total Environ. 656 (2019), 39–44.
Xiao, L., He, Z., Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew. Sust. Energ. Rev. 37 (2014), 550–559.
Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y., Cao, S., Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland. Ecol. Eng., 112, 2018, 10.1016/j.ecoleng.2017.12.018.
Xu, B., Ge, Z., He, Z., Sediment microbial fuel cells for wastewater treatment: challenges and opportunities. Environ. Sci.: Water Res. Technol., 1(3), 2015, 10.1039/c5ew00020c.
Xu, F., Cao, F.Qian, Kong, Q., Zhou, L.Lu, Yuan, Q., Zhu, Y.Jie, Wang, Q., Du, Y.da, Wang, Z.de, Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem. Eng. J., 2018, 339, 10.1016/j.cej.2018.02.003.
Xu, F., Yuan, Q., Zhou, L.L., Zhu, Y.J., Li, Y.M., da Du, Y., Wang, Q., Kong, Q., Economic benefit analysis of typical microbial fuel cells baseon a cost–benefit analysis model. Desalin. Water Treat., 135, 2018, 10.5004/dwt.2018.23149.
Xu, L., Yu, W., Graham, N., Zhao, Y., Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell. Chemosphere, 264, 2021, 10.1016/j.chemosphere.2020.128532.
Xu, H., Song, H.L., Singh, R.P., Yang, Y.L., Xu, J.Y., Yang, X.L., Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell. Bioresour. Technol., 320, 2021, 10.1016/j.biortech.2020.124285.
Xu, L., Zhao, Y., Doherty, L., Hu, Y., Hao, X., Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber. Sci. Rep., 6, 2016, 10.1038/srep26514.
Xu, L., Zhao, Y., Tang, C., Doherty, L., Influence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell. J. Environ. Manag., 207, 2018, 10.1016/j.jenvman.2017.11.035.
Xu, L., Zhao, Y., Wang, X., Yu, W., Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitrification-denitrification process. Chem. Eng. J., 344, 2018, 10.1016/j.cej.2018.03.065.
Xu, L., Zhao, Y., Wang, T., Liu, R., Gao, F., Energy capture and nutrients removal enhancement through a stacked constructed wetland incorporated with microbial fuel cell. Water Sci. Technol., 76(1), 2017, 10.2166/wst.2017.168.
Xu, L., Zhao, Y., Fan, C., Fan, Z., Zhao, F., First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresour. Technol., 243, 2017, 10.1016/j.biortech.2017.06.179.
Yadav, A.K., Dash, P., Mohanty, A., Abbassi, R., Mishra, B.K., Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol. Eng., 47, 2012, 10.1016/j.ecoleng.2012.06.029.
Yadav, R.K., Das, S., Patil, S.A., Are integrated bioelectrochemical technologies feasible for wastewater management?. Trends Biotechnol., 2022, 10.1016/j.tibtech.2022.09.001.
Yan, Z., Song, N., Cai, H., Tay, J.-H., Jiang, H., Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J. Hazard. Mater. 199 (2012), 217–225.
Yang, R., Liu, M., Yang, Q., Microbial fuel cell affected the filler pollution accumulation of constructed wetland in the lab-scale and pilot-scale coupling reactors. Chem. Eng. J., 429, 2022, 10.1016/j.cej.2021.132208.
Yang, X., Chen, S., Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function. Sci. Total Environ., 756, 2021, 10.1016/j.scitotenv.2020.144145.
Yang, Y., Lu, Z., Lin, X., Xia, C., Sun, G., Lian, Y., Xu, M., Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments. Bioresour. Technol., 179, 2015, 10.1016/j.biortech.2014.12.034.
Yang, Y., Zhao, Y., Tang, C., Liu, R., Chen, T., Dual role of macrophytes in constructed wetland-microbial fuel cells using pyrrhotite as cathode material: a comparative assessment. Chemosphere, 263, 2021, 10.1016/j.chemosphere.2020.128354.
Yang, Y., Zhao, Y., Tang, C., Mao, Y., Shen, C., Significance of water level in affecting cathode potential in electro-wetland. Bioresour. Technol., 285, 2019, 10.1016/j.biortech.2019.121345.
Yu, B., Liu, C., Wang, S., Wang, W., Zhao, S., Zhu, G., Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature. Sci. Total Environ., 724, 2020, 10.1016/j.scitotenv.2020.138017.
Zabihallahpoor, A., Rahimnejad, M., Talebnia, F., Sediment microbial fuel cells as a new source of renewable and sustainable energy: present status and future prospects. RSC Adv. 5:114 (2015), 94171–94183.
Zhang, B., Wen, Z., Ci, S., Mao, S., Chen, J., He, Z., Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. ACS Appl. Mater. Interfaces 6:10 (2014), 7464–7470.
Zhang, Y., Min, B., Huang, L., Angelidaki, I., Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour. Technol., 102(2), 2011, 10.1016/j.biortech.2010.09.044.
Zhang, F., Tian, L., He, Z., Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J. Power Sources, 196(22), 2011, 10.1016/j.jpowsour.2011.07.037.
Zhang, H., Chao, B., Gao, X., Cao, X., Li, X., Effect of starch-derived organic acids on the removal of polycyclic aromatic hydrocarbons in an aquaculture-sediment microbial fuel cell. J. Environ. Manag., 311, 2022, 114783.
Zhang, K., Wu, X., Chen, J., Wang, W., Luo, H., Chen, W., Ma, D., An, X., Wei, Z., The role and related microbial processes of mn-dependent anaerobic methane oxidation in reducing methane emissions from constructed wetland-microbial fuel cell. J. Environ. Manag., 294, 2021, 10.1016/j.jenvman.2021.112935.
Zhao, L., Deng, J., Hou, H., Li, J., Yang, Y., Investigation of PAH and oil degradation along with electricity generation in soil using an enhanced plant-microbial fuel cell. J. Clean. Prod. 221 (2019), 678–683, 10.1016/j.jclepro.2019.02.212.
Zhao, L., Li, J., Battaglia, F., He, Z., Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells. J. Power Sources, 333, 2016, 10.1016/j.jpowsour.2016.09.113.
Zhao, L., Naviaux, J., Brouwer, J., Hochbaum, A., Modeling of polarization losses of a microbial fuel cell. ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2014 Collocated with the ASME 2014 8th International Conference on Energy Sustainability, 2014, 10.1115/FuelCell2014-6388.
Zhao, L., Zhu, D., Tan, S., He, L., Lu, Z., Ciren, J., The performance of a novel sleeve-type cw-mfc-cw system for acid orange 7 (Ao7) removal and electricity generation with leaves as a carbon source on winter days. Desalin. Water Treat., 120, 2018, 10.5004/dwt.2018.22640.