[en] Dielectric screening plays a vital role in determining physical properties at the nanoscale and affects our ability to detect and characterize nanomaterials using optical techniques. We study how dielectric screening changes electromagnetic fields and many-body effects in nanostructures encapsulated inside carbon nanotubes. First, we show that metallic outer walls reduce the scattering intensity of the inner tube by 2 orders of magnitude compared to that of air-suspended inner tubes, in line with our local field calculations. Second, we find that the dielectric shift of the optical transition energies in the inner walls is greater when the outer tube is metallic than when it is semiconducting. The magnitude of the shift suggests that the excitons in small-diameter inner metallic tubes are thermally dissociated at room temperature if the outer tube is also metallic, and in essence, we observe band-to-band transitions in thin metallic double-walled nanotubes.
Disciplines :
Physique
Auteur, co-auteur :
GORDEEV, Georgy ; University of Luxembourg ; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Wasserroth, Sören; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Li, Han ; Department of Mechanical and Materials Engineering, University of Turku, Vesilinnantie 5, 20500 Turku, Finland ; Turku Collegium for Science, Medicine and Technology, University of Turku, FI-20520 Turku, Finland
Jorio, Ado ; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
Flavel, Benjamin S ; Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Reich, Stephanie ; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Dahlem Research School, Freie Universität Berlin Deutsche Forschungsgemeinschaft H2020 European Research Council
Subventionnement (détails) :
G.G. and S.R. acknowledge the Focus Area NanoScale of Freie Universitaet Berlin and the supraFAB Research Center. S.R. acknowledges support by the Deutsche Forschungsgemeinschaft under Grant SPP 2244 (443275027) and the European Research Council ERC under Grant DarkSERS (772108). B.S.F. acknowledges support from the DFG under Grants FL 834/5-1, FL 834/7-1, FL 834/12-1, FL834/13-1, and FL 834/9-1. G.G. acknowledges funding from the Luxembourg National Research Fund (FNR) under Project [AWORD].
Gallagher, M. J.; Chen, D.; Jacobsen, B. P.; Sarid, D.; Lamb, L. D.; Tinker, F. A.; Jiao, J.; Huffman, D. R.; Seraphin, S.; Zhou, D. Characterization of carbon nanotubes by scanning probe microscopy. Surface Science Letters 1993, 281, 335- 340, 10.1016/0167-2584(93)91198-W
Xiang, R. One-dimensional van der Waals heterostructures. Science 2020, 367, 537- 542, 10.1126/science.aaz2570
Gaufres, E.; Tang, N. Y.-W.; Lapointe, F.; Cabana, J.; Nadon, M.-A.; Cottenye, N.; Raymond, F.; Szkopek, T.; Martel, R. Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging. Nat. Photonics 2014, 8, 72- 78, 10.1038/nphoton.2013.309
Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Phys. Rev. Lett. 2010, 104, 207401, 10.1103/PhysRevLett.104.207401
Li, H.; Gordeev, G.; Toroz, D.; Di Tommaso, D.; Reich, S.; Flavel, B. S. Endohedral Filling Effects in Sorted and Polymer-Wrapped Single-Wall Carbon Nanotubes. J. Phys. Chem. C 2021, 125, 7476- 7487, 10.1021/acs.jpcc.1c01390
Pham, T.; Oh, S.; Stetz, P.; Onishi, S.; Kisielowski, C.; Cohen, M. L.; Zettl, A. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 2018, 361, 263- 266, 10.1126/science.aat4749
Kashtiban, R. J.; Burdanova, M. G.; Vasylenko, A.; Wynn, J.; Medeiros, P. V.; Ramasse, Q.; Morris, A. J.; Quigley, D.; Lloyd-Hughes, J.; Sloan, J. Linear and Helical Cesium Iodide Atomic Chains in Ultranarrow Single-Walled Carbon Nanotubes: Impact on Optical Properties. ACS Nano 2021, 15, 13389- 13398, 10.1021/acsnano.1c03705
Nascimento, V. V.; Neves, W. Q.; Alencar, R. S.; Li, G.; Fu, C.; Haddon, R. C.; Bekyarova, E.; Guo, J.; Alexandre, S. S.; Nunes, R. W.; Souza Filho, A. G.; Fantini, C. Origin of the Giant Enhanced Raman Scattering by Sulfur Chains Encapsulated inside Single-Wall Carbon Nanotubes. ACS Nano 2021, 15, 8574- 8582, 10.1021/acsnano.1c00390
Ravi Kiran, A.V.V.V.; Kusuma Kumari, G.; Krishnamurthy, P. T. Carbon nanotubes in drug delivery: Focus on anticancer therapies. J. Drug Delivery Sci. Technol. 2020, 59, 101892, 10.1016/j.jddst.2020.101892
Huth, K.; Glaeske, M.; Achazi, K.; Gordeev, G.; Kumar, S.; Arenal, R.; Sharma, S. K.; Adeli, M.; Setaro, A.; Reich, S.; Haag, R. Fluorescent Polymer─Single-Walled Carbon Nanotube Complexes with Charged and Noncharged Dendronized Perylene Bisimides for Bioimaging Studies. Small 2018, 14, 1800796, 10.1002/smll.201800796
Guo, J.; Xiang, R.; Cheng, T.; Maruyama, S.; Li, Y. One-Dimensional van der Waals Heterostructures: A Perspective. ACS Nanoscience Au 2022, 2, 3- 11, 10.1021/acsnanoscienceau.1c00023
Kavokine, N.; Bocquet, M. L.; Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 2022, 602, 84- 90, 10.1038/s41586-021-04284-7
Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C. Formation of ordered ice nanotubes. Nature 2001, 412, 802- 805, 10.1038/35090532
Faucher, S.; Kuehne, M.; Koman, V. B.; Northrup, N.; Kozawa, D.; Yuan, Z.; Li, S. X.; Zeng, Y.; Ichihara, T.; Misra, R. P.; Aluru, N.; Blankschtein, D.; Strano, M. S. Diameter Dependence of Water Filling in Lithographically Segmented Isolated Carbon Nanotubes. ACS Nano 2021, 15, 2778- 2790, 10.1021/acsnano.0c08634
Cambré, S.; Campo, J.; Beirnaert, C.; Verlackt, C.; Cool, P.; Wenseleers, W. Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. Nat. Nanotechnol. 2015, 10, 248- 252, 10.1038/nnano.2015.1
Tschannen, C. D.; Gordeev, G.; Reich, S.; Shi, L.; Pichler, T.; Frimmer, M.; Novotny, L.; Heeg, S. Raman Scattering Cross Section of Confined Carbyne. Nano Lett. 2020, 20, 6750- 6755, 10.1021/acs.nanolett.0c02632
Kuzmany, H.; Pfeiffer, R.; Hulman, M.; Kramberger, C. Raman spectroscopy of fullerenes and fullerene-nanotube composites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2004, 362, 2375- 2406, 10.1098/rsta.2004.1446
Gordeev, G.; Wasserroth, S.; Li, H.; Flavel, B.; Reich, S. Moiré-Induced Vibrational Coupling in Double-Walled Carbon Nanotubes. Nano Lett. 2021, 21, 6732- 6739, 10.1021/acs.nanolett.1c00295
Pesce, P. B. C.; Araujo, P. T.; Nikolaev, P.; Doorn, S. K.; Hata, K.; Saito, R.; Dresselhaus, M. S.; Jorio, A. Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination. Appl. Phys. Lett. 2010, 96, 051910, 10.1063/1.3297904
Thomsen, C.; Reich, S. In Raman Scattering in Carbon Nanotubes; Light Scattering in Solids IX; Manuel, C., Merlin, R., Eds.; Springer: Berlin, 2007; pp 164- 169.
Wenseleers, W.; Cambré, S.; Čulin, J.; Bouwen, A.; Goovaerts, E. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy. Adv. Mater. 2007, 19, 2274- 2278, 10.1002/adma.200700773
Martinati, M.; Wenseleers, W.; Shi, L.; Pratik, S. M.; Rohringer, P.; Cui, W.; Pichler, T.; Coropceanu, V.; Brédas, J. L.; Cambré, S. Electronic structure of confined carbyne from joint wavelength-dependent resonant Raman spectroscopy and density functional theory investigations. Carbon 2022, 189, 276- 283, 10.1016/j.carbon.2021.12.059
Malic, E.; Maultzsch, J.; Reich, S.; Knorr, A. Excitonic absorption spectra of metallic single-walled carbon nanotubes. Phys. Rev. B 2010, 82, 035433, 10.1103/PhysRevB.82.035433
Levshov, D. I.; Avramenko, M. V.; Erkens, M.; Tran, H.-N.; Cao, T. T.; Nguyen, V. C.; Flahaut, E.; Popov, V. N.; Zahab, A.-A.; Sauvajol, J.-L.; Arenal, R.; Wenseleers, W.; Cambré, S.; Paillet, M. Partial quenching of electronic Raman scattering in double-wall carbon nanotubes by interlayer coupling. Carbon 2023, 203, 801- 812, 10.1016/j.carbon.2022.12.003
Wang, S.; Liang, X. L.; Chen, Q.; Zhang, Z. Y.; Peng, L.-M. Field-Effect Characteristics and Screening in Double-Walled Carbon Nanotube Field-Effect Transistors. J. Phys. Chem. B 2005, 109, 17361- 17365, 10.1021/jp053739+
Tomio, Y.; Suzuura, H.; Ando, T. Cross-polarized excitons in double-wall carbon nanotubes. Phys. Rev. B 2012, 86, 245428, 10.1103/PhysRevB.86.245428
Tomio, Y.; Suzuura, H.; Ando, T. Interwall screening and excitons in double-wall carbon nanotubes. Phys. Rev. B 2012, 85, 085411, 10.1103/PhysRevB.85.085411
Vodenitcharova, T.; Zhang, C. Effective wall thickness of a single-walled carbon nanotube. Physical Review B - Condensed Matter and Materials Physics 2003, 68, 165401, 10.1103/PhysRevB.68.165401
Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, U.K., 2012; p 395.
Holmström, P.; Thylén, L.; Bratkovsky, A. Dielectric function of quantum dots in the strong confinement regime. J. Appl. Phys. 2010, 107, 064307, 10.1063/1.3309343
Sihvola, A. Mixing Rules with Complex Dielectric Coefficients. Subsurface Sensing Technologies and Applications 2000, 1, 393- 415, 10.1023/A:1026511515005
Maxwell Garnett, J. C. XII. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc., A 1904, 203, 385- 420, 10.1098/rsta.1904.0024
Ando, T. Excitons in Carbon Nanotubes. J. Phys. Soc. Jpn. 1997, 66, 1066- 1073, 10.1143/JPSJ.66.1066
Walsh, A. G.; Vamivakas, A. N.; Yin, Y.; Cronin, S. B.; Ünlü, M. S.; Goldberg, B. B.; Swan, A. K. Screening of excitons in single, suspended carbon nanotubes. Nano Lett. 2007, 7, 1485- 1488, 10.1021/nl070193p
Kane, C. L.; Mele, E. J. Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 2004, 93, 197402, 10.1103/PhysRevLett.93.197402
Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The Optical Resonances in Carbon nanotubes arise from excitons. Science 2005, 308, 838- 841, 10.1126/science.1110265
Perebeinos, V.; Tersoff, J.; Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 2004, 92, 8- 11, 10.1103/PhysRevLett.92.257402
Araujo, P. T.; Jorio, A.; Dresselhaus, M. S.; Sato, K.; Saito, R. Diameter Dependence of the Dielectric Constant for the Excitonic Transition Energy of Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 2009, 103, 146802, 10.1103/PhysRevLett.103.146802
Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235- 1238, 10.1021/nl034428i
Streit, J.; Snyder, C. R.; Campo, J.; Zheng, M.; Simpson, J. R.; Hight Walker, A. R.; Fagan, J. A. Alkane Encapsulation Induces Strain in Small-Diameter Single-Wall Carbon Nanotubes. J. Phys. Chem. C 2018, 122, 11577- 11585, 10.1021/acs.jpcc.8b03166
Pfohl, M.; Tune, D. D.; Graf, A.; Zaumseil, J.; Krupke, R.; Flavel, B. S. Fitting Single-Walled Carbon Nanotube Optical Spectra. ACS Omega 2017, 2, 1163- 1171, 10.1021/acsomega.6b00468
Maultzsch, J.; Telg, H.; Reich, S.; Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Phys. Rev. B 2005, 72, 205438, 10.1103/PhysRevB.72.205438
Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 2004, 93, 147406, 10.1103/PhysRevLett.93.147406
Gordeev, G.; Jorio, A.; Kusch, P.; Vieira, B. G.; Flavel, B.; Krupke, R.; Barros, E. B.; Reich, S. Resonant anti-Stokes Raman scattering in single-walled carbon nanotubes. Phys. Rev. B 2017, 96, 245415, 10.1103/PhysRevB.96.245415
Nakar, D.; Gordeev, G.; MacHado, L. D.; Popovitz-Biro, R.; Rechav, K.; Oliveira, E. F.; Kusch, P.; Jorio, A.; Galvaõ, D. S.; Reich, S.; Joselevich, E. Few-Wall Carbon Nanotube Coils. Nano Lett. 2020, 20, 953- 962, 10.1021/acs.nanolett.9b03977
Araujo, P. T.; Maciel, I. O.; Pesce, P. B. C.; Pimenta, M. A.; Doorn, S. K.; Qian, H.; Hartschuh, A.; Steiner, M.; Grigorian, L.; Hata, K.; Jorio, A. Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B 2008, 77, 241403, 10.1103/PhysRevB.77.241403
Ghavanloo, E.; Fazelzadeh, S. A.; Rafii-Tabar, H. Analysis of radial breathing-mode of nanostructures with various morphologies: A critical review. Int. Mater. Rev. 2015, 60, 312- 329, 10.1179/1743280415Y.0000000002
Ghavanloo, E.; Fazelzadeh, S. A. Prediction of radial breathing-like modes of double-walled carbon nanotubes with arbitrary chirality. Physica B: Condensed Matter 2014, 451, 34- 38, 10.1016/j.physb.2014.06.014
Telg, H.; Maultzsch, J.; Reich, S.; Hennrich, F.; Thomsen, C. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 2004, 93, 177401, 10.1103/PhysRevLett.93.177401
Setaro, A.; Adeli, M.; Glaeske, M.; Przyrembel, D.; Bisswanger, T.; Gordeev, G.; Maschietto, F.; Faghani, A.; Paulus, B.; Weinelt, M.; Arenal, R.; Haag, R.; Reich, S. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat. Commun. 2017, 8, 14281, 10.1038/ncomms14281
Mueller, N. S.; Heeg, S.; Reich, S. Surface-enhanced Raman scattering as a higher-order Raman process. Phys. Rev. A 2016, 94, 023813, 10.1103/PhysRevA.94.023813
O’Connell, M. J.; Sivaram, S.; Doorn, S. K. Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed HiPco nanotubes. Phys. Rev. B 2004, 69, 023813, 10.1103/PhysRevB.69.235415
Machón, M.; Reich, S.; Telg, H.; Maultzsch, J.; Ordejón, P.; Thomsen, C. Strength of radial breathing mode in single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 035416, 10.1103/PhysRevB.71.035416
Kalbac, M.; Green, A. A.; Hersam, M. C.; Kavan, L. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type. Chem. - Eur. J. 2011, 17, 9806- 9815, 10.1002/chem.201100590
Farhat, H.; Sasaki, K.; Kalbac, M.; Hofmann, M.; Saito, R.; Dresselhaus, M. S.; Kong, J. Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes. Phys. Rev. Lett. 2009, 102, 126804, 10.1103/PhysRevLett.102.126804
Hatting, B.; Heeg, S.; Ataka, K.; Heberle, J.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Reich, S. Fermi energy shift in deposited metallic nanotubes: A Raman scattering study. Physical Review B - Condensed Matter and Materials Physics 2013, 87, 165442, 10.1103/PhysRevB.87.165442
Gordeev, G.; Setaro, A.; Glaeske, M.; Jürgensen, S.; Reich, S. Doping in covalently functionalized carbon nanotubes: A Raman scattering study. Physica Status Solidi (B) 2016, 253, 2461- 2467, 10.1002/pssb.201600636
Wroblewska, A.; Gordeev, G.; Duzynska, A.; Reich, S.; Zdrojek, M. Doping and plasmonic Raman enhancement in hybrid single walled carbon nanotubes films with embedded gold nanoparticles. Carbon 2021, 179, 531- 540, 10.1016/j.carbon.2021.04.079
Araujo, P. T.; Nugraha, A. R.; Sato, K.; Dresselhaus, M. S.; Saito, R.; Jorio, A. Chirality dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes. Physica Status Solidi (B) Basic Research 2010, 247, 2847- 2850, 10.1002/pssb.201000294
Nugraha, A. R.; Saito, R.; Sato, K.; Araujo, P. T.; Jorio, A.; Dresselhaus, M. S. Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. Appl. Phys. Lett. 2010, 97, 91905, 10.1063/1.3485293
Heeg, S.; Shi, L.; Poulikakos, L. V.; Pichler, T.; Novotny, L. Carbon Nanotube Chirality Determines Properties of Encapsulated Linear Carbon Chain. Nano Lett. 2018, 18, 5426- 5431, 10.1021/acs.nanolett.8b01681
Heeg, S.; Shi, L.; Pichler, T.; Novotny, L. Raman resonance profile of an individual confined long linear carbon chain. Carbon 2018, 139, 581- 585, 10.1016/j.carbon.2018.07.007
Cadena, A.; Botka, B.; Pekker, A.; Tschannen, C. D.; Lombardo, C.; Novotny, L.; Khlobystov, A. N.; Kamaras, K. Molecular Encapsulation from the Liquid Phase and Graphene Nanoribbon Growth in Carbon Nanotubes. J. Phys. Chem. Lett. 2022, 13, 9752- 9758, 10.1021/acs.jpclett.2c02046
Erkens, M.; Cambré, S.; Flahaut, E.; Fossard, F.; Loiseau, A.; Wenseleers, W. Ultrasonication-induced extraction of inner shells from double-wall carbon nanotubes characterized via in situ spectroscopy after density gradient ultracentrifugation. Carbon 2021, 185, 113- 125, 10.1016/j.carbon.2021.07.075
Erkens, M.; Levshov, D.; Wenseleers, W.; Li, H.; Flavel, B. S.; Fagan, J. A.; Popov, V. N.; Avramenko, M.; Forel, S.; Flahaut, E.; Cambré, S. Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy. ACS Nano 2022, 16, 16038- 16053, 10.1021/acsnano.2c03883
Zhao, S.; Kitagawa, T.; Miyauchi, Y.; Matsuda, K.; Shinohara, H.; Kitaura, R. Rayleigh scattering studies on inter-layer interactions in structure-defined individual double-wall carbon nanotubes. Nano Research 2014, 7, 1548- 1555, 10.1007/s12274-014-0515-y
Pomraenke, R.; Maultzsch, J.; Reich, S.; Chang, E.; Prezzi, D.; Ruini, A.; Molinari, E.; Strano, M. S.; Thomsen, C.; Lienau, C. Two-photon photoluminescence and exciton binding energies in single-walled carbon nanotubes. Physica Status Solidi (B) Basic Research 2006, 243, 2428- 2435, 10.1002/pssb.200668080
Gordeev, G.; Flavel, B.; Krupke, R.; Kusch, P.; Reich, S. Asymmetry of resonance Raman profiles in semiconducting single-walled carbon nanotubes at the first excitonic transition. Phys. Rev. B 2019, 99, 45404, 10.1103/PhysRevB.99.045404
Bonabi, F.; Brun, S. J.; Pedersen, T. G. Excitonic optical response of carbon chains confined in single-walled carbon nanotubes. Phys. Rev. B 2017, 96, 155419, 10.1103/PhysRevB.96.155419
Shi, L.; Rohringer, P.; Wanko, M.; Rubio, A.; Waßerroth, S.; Reich, S.; Cambré, S.; Wenseleers, W.; Ayala, P.; Pichler, T. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Physical Review Materials 2017, 1, 075601, 10.1103/PhysRevMaterials.1.075601
Tschannen, C. D.; Frimmer, M.; Gordeev, G.; Vasconcelos, T. L.; Shi, L.; Pichler, T.; Reich, S.; Heeg, S.; Novotny, L. Anti-Stokes Raman Scattering of Single Carbyne Chains. ACS Nano 2021, 15, 12249- 12255, 10.1021/acsnano.1c03893