PTASZYNSKI, Krzysztof ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
no
Language :
English
Title :
Dynamical signatures of discontinuous phase transitions: How phase coexistence determines exponential versus power-law scaling
E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin, and J. I. Cirac, Dissipative phase transition in a central spin system, Phys. Rev. A 86, 012116 (2012) 1050-2947 10.1103/PhysRevA.86.012116.
F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Spectral theory of Liouvillians for dissipative phase transitions, Phys. Rev. A 98, 042118 (2018) 2469-9926 10.1103/PhysRevA.98.042118.
B. Debecker, J. Martin, and F. Damanet, Controlling matter phases beyond Markov, Phys. Rev. Lett. 133, 140403 (2024) 10.1103/PhysRevLett.133.140403.
B. Debecker, J. Martin, and F. Damanet, Spectral theory of non-Markovian dissipative phase transitions, Phys. Rev. A 110, 042201 (2024) 10.1103/PhysRevA.110.042201.
D. Huybrechts, F. Minganti, F. Nori, M. Wouters, and N. Shammah, Validity of mean-field theory in a dissipative critical system: Liouvillian gap, (Equation presented)-symmetric antigap, and permutational symmetry in the (Equation presented) model, Phys. Rev. B 101, 214302 (2020) 2469-9950 10.1103/PhysRevB.101.214302.
P. Wang and R. Fazio, Dissipative phase transitions in the fully connected Ising model with (Equation presented)-spin interaction, Phys. Rev. A 103, 013306 (2021) 2469-9926 10.1103/PhysRevA.103.013306.
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009).
P. Hanggi, H. Grabert, P. Talkner, and H. Thomas, Bistable systems: Master equation versus Fokker-Planck modeling, Phys. Rev. A 29, 371 (1984) 0556-2791 10.1103/PhysRevA.29.371.
R. Hinch and S. J. Chapman, Exponentially slow transitions on a Markov chain: The frequency of calcium sparks, Eur. J. Appl. Math 16, 427 (2005) 0956-7925 10.1017/S0956792505006194.
J. Kurchan, Six out of equilibrium lectures arXiv:0901.1271.
W. Casteels, R. Fazio, and C. Ciuti, Critical dynamical properties of a first-order dissipative phase transition, Phys. Rev. A 95, 012128 (2017) 2469-9926 10.1103/PhysRevA.95.012128.
F. Vicentini, F. Minganti, R. Rota, G. Orso, and C. Ciuti, Critical slowing down in driven-dissipative Bose-Hubbard lattices, Phys. Rev. A 97, 013853 (2018) 2469-9926 10.1103/PhysRevA.97.013853.
J. S. Ferreira and P. Ribeiro, Lipkin-Meshkov-Glick model with Markovian dissipation: A description of a collective spin on a metallic surface, Phys. Rev. B 100, 184422 (2019) 2469-9950 10.1103/PhysRevB.100.184422.
R. Sett, F. Hassani, D. Phan, S. Barzanjeh, A. Vukics, and J. M. Fink, Emergent macroscopic bistability induced by a single superconducting qubit, PRX Quantum 5, 010327 (2024) 2691-3399 10.1103/PRXQuantum.5.010327.
B. Nguyen, U. Seifert, and A. C. Barato, Phase transition in thermodynamically consistent biochemical oscillators, J. Chem. Phys. 149, 045101 (2018) 0021-9606 10.1063/1.5032104.
B. Remlein and U. Seifert, Nonequilibrium fluctuations of chemical reaction networks at criticality: The Schlögl model as paradigmatic case, J. Chem. Phys. 160, 134103 (2024) 0021-9606 10.1063/5.0203659.
B. Nguyen and U. Seifert, Exponential volume dependence of entropy-current fluctuations at first-order phase transitions in chemical reaction networks, Phys. Rev. E 102, 022101 (2020) 2470-0045 10.1103/PhysRevE.102.022101.
C. E. Fiore, P. E. Harunari, C. E. Fernández Noa, and G. T. Landi, Current fluctuations in nonequilibrium discontinuous phase transitions, Phys. Rev. E 104, 064123 (2021) 2470-0045 10.1103/PhysRevE.104.064123.
M. J. Kewming, M. T. Mitchison, and G. T. Landi, Diverging current fluctuations in critical Kerr resonators, Phys. Rev. A 106, 033707 (2022) 2469-9926 10.1103/PhysRevA.106.033707.
A. Gopal, M. Esposito, and N. Freitas, Large deviations theory for noisy nonlinear electronics: CMOS inverter as a case study, Phys. Rev. B 106, 155303 (2022) 2469-9950 10.1103/PhysRevB.106.155303.
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478, 1 (2009) 0370-1573 10.1016/j.physrep.2009.05.002.
G. Falasco and M. Esposito, Macroscopic stochastic thermodynamics, arXiv:2307.12406.
R. Landauer, Fluctuations in bistable tunnel diode circuits, J. App. Phys. 33, 2209 (1962) 0021-8979 10.1063/1.1728929.
P. Hänggi and H. Thomas, Stochastic processes: Time evolution, symmetries and linear response, Phys. Rep. 88, 207 (1982) 0370-1573 10.1016/0370-1573(82)90045-X.
H. Ge and H. Qian, Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system, Phys. Rev. Lett. 103, 148103 (2009) 0031-9007 10.1103/PhysRevLett.103.148103.
C. Kittel, Phase transition of a molecular zipper, Am. J. Phys. 37, 917 (1969) 0002-9505 10.1119/1.1975930.
T. E. Lee, C.-K. Chan, and S. F. Yelin, Dissipative phase transitions: Independent versus collective decay and spin squeezing, Phys. Rev. A 90, 052109 (2014) 1050-2947 10.1103/PhysRevA.90.052109.
G. S. Agarwal and R. R. Puri, Nonequilibrium phase transitions in a squeezed cavity and the generation of spin states satisfying uncertainty equality, Opt. Commun. 69, 267 (1989) 0030-4018 10.1016/0030-4018(89)90113-2.
G. S. Agarwal and R. R. Puri, Cooperative behavior of atoms irradiated by broadband squeezed light, Phys. Rev. A 41, 3782 (1990) 1050-2947 10.1103/PhysRevA.41.3782.
D. Barberena and A. M. Rey, Critical steady states of all-to-all squeezed and driven superradiance: An analytic approach, Phys. Rev. A 109, 013709 (2024) 2469-9926 10.1103/PhysRevA.109.013709.
U. Fano, Pressure broadening as a prototype of relaxation, Phys. Rev. 131, 259 (1963) 0031-899X 10.1103/PhysRev.131.259.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1999).
S. Machnes and M. B. Plenio, Surprising interactions of Markovian noise and coherent driving, arXiv:1408.3056.
M. Am-Shallem, A. Levy, I. Schaefer, and R. Kosloff, Three approaches for representing Lindblad dynamics by a matrix-vector notation, arXiv:1510.08634.
R. Uzdin and R. Kosloff, Speed limits in Liouville space for open quantum systems, Europhys. Lett. 115, 40003 (2016) 0295-5075 10.1209/0295-5075/115/40003.
E. Davies, Quantum stochastic processes II, Commun. Math. Phys. 19, 83 (1970) 0010-3616 10.1007/BF01646628.
Y. Zhang and T. Barthel, Criteria for Davies irreducibility of Markovian quantum dynamics, J. Phys. A: Math. Theor. 57, 115301 (2024) 1751-8113 10.1088/1751-8121/ad2a1e.
F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps, Phys. Rev. A 100, 062131 (2019) 2469-9926 10.1103/PhysRevA.100.062131.
T. Mori and T. Shirai, Resolving a discrepancy between Liouvillian gap and relaxation time in boundary-dissipated quantum many-body systems, Phys. Rev. Lett. 125, 230604 (2020) 0031-9007 10.1103/PhysRevLett.125.230604.
T. Haga, M. Nakagawa, R. Hamazaki, and M. Ueda, Liouvillian skin effect: Slowing down of relaxation processes without gap closing, Phys. Rev. Lett. 127, 070402 (2021) 0031-9007 10.1103/PhysRevLett.127.070402.
J. Bensa and M. Žnidarič, Fastest local entanglement scrambler, multistage thermalization, and a non-Hermitian phantom, Phys. Rev. X 11, 031019 (2021) 2160-3308 10.1103/PhysRevX.11.031019.
G. Lee, A. McDonald, and A. Clerk, Anomalously large relaxation times in dissipative lattice models beyond the non-Hermitian skin effect, Phys. Rev. B 108, 064311 (2023) 2469-9950 10.1103/PhysRevB.108.064311.
T. Mori and T. Shirai, Symmetrized Liouvillian gap in Markovian open quantum systems, Phys. Rev. Lett. 130, 230404 (2023) 0031-9007 10.1103/PhysRevLett.130.230404.
O. Scarlatella, A. A. Clerk, and M. Schiro, Spectral functions and negative density of states of a driven-dissipative nonlinear quantum resonator, New J. Phys. 21, 043040 (2019) 1367-2630 10.1088/1367-2630/ab0ce9.
A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys. 82, 1155 (2010) 0034-6861 10.1103/RevModPhys.82.1155.
M. Lax, Formal theory of quantum fluctuations from a driven state, Phys. Rev. 129, 2342 (1963) 0031-899X 10.1103/PhysRev.129.2342.
G. T. Landi, M. J. Kewming, M. T. Mitchison, and P. P. Potts, Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics, PRX Quantum 5, 020201 (2024) 2691-3399 10.1103/PRXQuantum.5.020201.
G. E. Crooks, On the Drazin inverse of the rate matrix (2018), technical note.
M. Esposito, U. Harbola, and S. Mukamel, Fluctuation theorem for counting statistics in electron transport through quantum junctions, Phys. Rev. B 75, 155316 (2007) 1098-0121 10.1103/PhysRevB.75.155316.
C. Flindt, T. Novotný, A. Braggio, M. Sassetti, and A.-P. Jauho, Counting statistics of non-Markovian quantum stochastic processes, Phys. Rev. Lett. 100, 150601 (2008) 0031-9007 10.1103/PhysRevLett.100.150601.
N. Walldorf, F. Brange, C. Padurariu, and C. Flindt, Noise and full counting statistics of a Cooper pair splitter, Phys. Rev. B 101, 205422 (2020) 2469-9950 10.1103/PhysRevB.101.205422.
J. Huber, P. Kirton, and P. Rabl, Nonequilibrium magnetic phases in spin lattices with gain and loss, Phys. Rev. A 102, 012219 (2020) 2469-9926 10.1103/PhysRevA.102.012219.
H.-K. Janssen and O. Stenull, First-order phase transitions in outbreaks of co-infectious diseases and the extended general epidemic process, Europhys. Lett. 113, 26005 (2016) 0295-5075 10.1209/0295-5075/113/26005.
H. Touchette, R. J. Harris, and J. Tailleur, First-order phase transitions from poles in asymptotic representations of partition functions, Phys. Rev. E 81, 030101 (R) (2010) 1539-3755 10.1103/PhysRevE.81.030101.
A. Deger, K. Brandner, and C. Flindt, Lee-Yang zeros and large-deviation statistics of a molecular zipper, Phys. Rev. E 97, 012115 (2018) 2470-0045 10.1103/PhysRevE.97.012115.
V. Holubec, P. Chvosta, and P. Maass, Dynamics and energetics for a molecular zipper model under external driving, J. Stat. Mech. (2012) P11009 1742-5468 10.1088/1742-5468/2012/11/P11009.
M. Abdullah, S. Khairunnisa, and F. Akbar, Zipper model for the melting of thin films, Eur. J. Phys. 37, 015501 (2016) 0143-0807 10.1088/0143-0807/37/1/015501.
T. Herpich, T. Cossetto, G. Falasco, and M. Esposito, Stochastic thermodynamics of all-to-all interacting many-body systems, New J. Phys. 22, 063005 (2020) 1367-2630 10.1088/1367-2630/ab882f.
V. Britanak, P. C. Yip, and K. R. Rao, Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations (Elsevier/Academic Press, Amsterdam, 2010).
H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940) 0031-8914 10.1016/S0031-8914(40)90098-2.
J. E. Moyal, Stochastic processes and statistical physics, J. R. Stat. Soc. B 11, 150 (1949) 1369-7412 10.1111/j.2517-6161.1949.tb00030.x.
P. Hänggi and P. Jung, Bistability in active circuits: Application of a novel Fokker-Planck approach, IBM J. Res. Dev. 32, 119 (1988) 0018-8646 10.1147/rd.321.0119.
B. Gaveau, M. Moreau, and J. Toth, Master equation and Fokker-Planck equation: Comparison of entropy and of rate constants, Lett. Math. Phys. 40, 101 (1997) 0377-9017 10.1023/A:1007362811930.
M. Vellela and H. Qian, Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: The Schlögl model revisited, J. R. Soc. Interface 6, 925 (2009) 1742-5689 10.1098/rsif.2008.0476.
D. A. Kessler and N. M. Shnerb, Extinction rates for fluctuation-induced metastabilities: A real-space WKB approach, J. Stat. Phys. 127, 861 (2007) 0022-4715 10.1007/s10955-007-9312-2.
P. Gaspard, Trace formula for noisy flows, J. Stat. Phys. 106, 57 (2002) 0022-4715 10.1023/A:1013167928166.
P. Gaspard, The correlation time of mesoscopic chemical clocks, J. Chem. Phys. 117, 8905 (2002) 0021-9606 10.1063/1.1513461.
D. Gonze, J. Halloy, and P. Gaspard, Biochemical clocks and molecular noise: Theoretical study of robustness factors, J. Chem. Phys. 116, 10997 (2002) 0021-9606 10.1063/1.1475765.
B. Remlein, V. Weissmann, and U. Seifert, Coherence of oscillations in the weak-noise limit, Phys. Rev. E 105, 064101 (2022) 2470-0045 10.1103/PhysRevE.105.064101.
H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3, 107 (1935) 0021-9606 10.1063/1.1749604.
S. Morrison and A. S. Parkins, Collective spin systems in dispersive optical cavity QED: Quantum phase transitions and entanglement, Phys. Rev. A 77, 043810 (2008) 1050-2947 10.1103/PhysRevA.77.043810.
T. E. Lee, S. Gopalakrishnan, and M. D. Lukin, Unconventional magnetism via optical pumping of interacting spin systems, Phys. Rev. Lett. 110, 257204 (2013) 0031-9007 10.1103/PhysRevLett.110.257204.
L. Song and J. Jin, Crossover from discontinuous to continuous phase transition in a dissipative spin system with collective decay, Phys. Rev. B 108, 054302 (2023) 2469-9950 10.1103/PhysRevB.108.054302.
J. Keizer, Thermodynamics at nonequilibrium steady states, J. Chem. Phys. 69, 2609 (1978) 0021-9606 10.1063/1.436908.
D. F. Walls, P. D. Drummond, S. S. Hassan, and H. J. Carmichael, Non-equilibrium phase transitions in cooperative atomic systems, Prog. Theor. Phys. Suppl. 64, 307 (1978) 0375-9687 10.1143/PTPS.64.307.
P. Drummond and H. Carmichael, Volterra cycles and the cooperative fluorescence critical point, Opt. Commun. 27, 160 (1978) 0030-4018 10.1016/0030-4018(78)90198-0.
H. Carmichael, Analytical and numerical results for the steady state in cooperative resonance fluorescence, J. Phys. B: At. Mol. Phys. 13, 3551 (1980) 0022-3700 10.1088/0022-3700/13/18/009.
A. M. Smith and C. W. Gardiner, Phase-space method without large-(Equation presented) scaling for the laser and optical bistability, Phys. Rev. A 38, 4073 (1988) 0556-2791 10.1103/PhysRevA.38.4073.
K. Merkel, V. Link, K. Luoma, and W. T. Strunz, Phase space theory for open quantum systems with local and collective dissipative processes, J. Phys. A: Math. Theor. 54, 035303 (2021) 1751-8113 10.1088/1751-8121/abd155.
J. Dubois, U. Saalmann, and J. M. Rost, Semi-classical Lindblad master equation for spin dynamics, J. Phys. A: Math. Theor. 54, 235201 (2021) 1751-8113 10.1088/1751-8121/abf79b.
K. Macieszczak, D. C. Rose, I. Lesanovsky, and J. P. Garrahan, Theory of classical metastability in open quantum systems, Phys. Rev. Res. 3, 033047 (2021) 2643-1564 10.1103/PhysRevResearch.3.033047.
E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, Dissipative preparation of spin squeezed atomic ensembles in a steady state, Phys. Rev. Lett. 110, 120402 (2013) 0031-9007 10.1103/PhysRevLett.110.120402.