PTASZYNSKI, Krzysztof ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
no
Language :
English
Title :
System-bath entanglement of noninteracting fermionic impurities: Equilibrium, transient, and steady-state regimes
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009) 0034-6861 10.1103/RevModPhys.81.865.
L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008) 0034-6861 10.1103/RevModPhys.80.517.
N. Lafrorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 646, 1 (2016) 0370-1573 10.1016/j.physrep.2016.06.008.
G. De Chiara and A. Sanpera, Genuine quantum correlations in quantum many-body systems: A review of recent progress, Rep. Prog. Phys. 81, 074002 (2018) 0034-4885 10.1088/1361-6633/aabf61.
B. Bellomo, R. Lo Franco, and G. Compagno, Non-Markovian effects on the dynamics of entanglement, Phys. Rev. Lett. 99, 160502 (2007) 0031-9007 10.1103/PhysRevLett.99.160502.
L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Sudden death and sudden birth of entanglement in common structured reservoirs, Phys. Rev. A 79, 042302 (2009) 1050-2947 10.1103/PhysRevA.79.042302.
S. Maniscalco, F. Francica, R. L. Zaffino, N. L. Gullo, and F. Plastina, Protecting entanglement via the quantum Zeno effect, Phys. Rev. Lett. 100, 090503 (2008) 0031-9007 10.1103/PhysRevLett.100.090503.
B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, Entanglement trapping in structured environments, Phys. Rev. A 78, 060302 (R) (2008) 1050-2947 10.1103/PhysRevA.78.060302.
Á. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement and non-Markovianity of quantum evolutions, Phys. Rev. Lett. 105, 050403 (2010) 0031-9007 10.1103/PhysRevLett.105.050403.
M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Cavity-loss-induced generation of entangled atoms, Phys. Rev. A 59, 2468 (1999) 1050-2947 10.1103/PhysRevA.59.2468.
M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, Entanglement induced by a single-mode heat environment, Phys. Rev. A 65, 040101 (R) (2002) 1050-2947 10.1103/PhysRevA.65.040101.
L. Jakóbczyk, Entangling two qubits by dissipation, J. Phys. A: Math. Gen. 35, 6383 (2002) 0305-4470 10.1088/0305-4470/35/30/313.
D. Braun, Creation of entanglement by interaction with a common heat bath, Phys. Rev. Lett. 89, 277901 (2002) 0031-9007 10.1103/PhysRevLett.89.277901.
F. Benatti, R. Floreanini, and M. Piani, Environment induced entanglement in Markovian dissipative dynamics, Phys. Rev. Lett. 91, 070402 (2003) 0031-9007 10.1103/PhysRevLett.91.070402.
S. Schneider and G. J. Milburn, Entanglement in the steady state of a collective-angular-momentum (Dicke) model, Phys. Rev. A 65, 042107 (2002) 1050-2947 10.1103/PhysRevA.65.042107.
B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, Preparation of entangled states by quantum Markov processes, Phys. Rev. A 78, 042307 (2008) 1050-2947 10.1103/PhysRevA.78.042307.
M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Dissipative preparation of entanglement in optical cavities, Phys. Rev. Lett. 106, 090502 (2011) 0031-9007 10.1103/PhysRevLett.106.090502.
H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. Ignacio Cirac, and E. S. Polzik, Entanglement generated by dissipation and steady state entanglement of two macroscopic objects, Phys. Rev. Lett. 107, 080503 (2011) 0031-9007 10.1103/PhysRevLett.107.080503.
J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, An open-system quantum simulator with trapped ions, Nature (London) 470, 486 (2011) 0028-0836 10.1038/nature09801.
Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, Dissipative production of a maximally entangled steady state of two quantum bits, Nature (London) 504, 415 (2013) 0028-0836 10.1038/nature12801.
S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, Autonomously stabilized entanglement between two superconducting quantum bits, Nature (London) 504, 419 (2013) 0028-0836 10.1038/nature12802.
J. Bohr Brask, G. Haack, N. Brunner, and M. Huber, Autonomous quantum thermal machine for generating steady-state entanglement, New J. Phys. 17, 113029 (2015) 1367-2630 10.1088/1367-2630/17/11/113029.
J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32, 37 (1964) 0033-068X 10.1143/PTP.32.37.
S.-S. B. Lee, J. Park, and H.-S. Sim, Macroscopic quantum entanglement of a Kondo cloud at finite temperature, Phys. Rev. Lett. 114, 057203 (2015) 0031-9007 10.1103/PhysRevLett.114.057203.
J. Shim, H.-S. Sim, and S.-S. B. Lee, Numerical renormalization group method for entanglement negativity at finite temperature, Phys. Rev. B 97, 155123 (2018) 2469-9950 10.1103/PhysRevB.97.155123.
D. Kim, J. Shim, and H.-S. Sim, Universal thermal entanglement of multichannel Kondo effects, Phys. Rev. Lett. 127, 226801 (2021) 0031-9007 10.1103/PhysRevLett.127.226801.
A. Bayat, P. Sodano, and S. Bose, Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo model, Phys. Rev. B 81, 064429 (2010) 1098-0121 10.1103/PhysRevB.81.064429.
C. Wagner, T. Chowdhury, J. H. Pixley, and K. Ingersent, Long-range entanglement near a Kondo-destruction quantum critical point, Phys. Rev. Lett. 121, 147602 (2018) 0031-9007 10.1103/PhysRevLett.121.147602.
J. Shim, D. Kim, and H.-S. Sim, Hierarchical entanglement shells of multichannel Kondo clouds, Nat. Commun. 14, 3521 (2023) 2041-1723 10.1038/s41467-023-39234-6.
B. Alkurtass, A. Bayat, I. Affleck, S. Bose, H. Johannesson, P. Sodano, E. S. Sørensen, and K. Le Hur, Entanglement structure of the two-channel Kondo model, Phys. Rev. B 93, 081106 (R) (2016) 2469-9950 10.1103/PhysRevB.93.081106.
A. Bayat, Scaling of tripartite entanglement at impurity quantum phase transitions, Phys. Rev. Lett. 118, 036102 (2017) 0031-9007 10.1103/PhysRevLett.118.036102.
A. Bayat, S. Bose, P. Sodano, and H. Johannesson, Entanglement probe of two-impurity Kondo physics in a spin chain, Phys. Rev. Lett. 109, 066403 (2012) 0031-9007 10.1103/PhysRevLett.109.066403.
A. Bayat, H. Johannesson, S. Bose, and P. Sodano, An order parameter for impurity systems at quantum criticality, Nat. Commun. 5, 3784 (2014) 2041-1723 10.1038/ncomms4784.
G. Yoo, S.-S. B. Lee, and H.-S. Sim, Detecting Kondo entanglement by electron conductance, Phys. Rev. Lett. 120, 146801 (2018) 0031-9007 10.1103/PhysRevLett.120.146801.
G. Mihailescu, S. Campbell, and A. K. Mitchell, Thermometry of strongly correlated fermionic quantum systems using impurity probes, Phys. Rev. A 107, 042614 (2023) 2469-9926 10.1103/PhysRevA.107.042614.
T. A. Costi and R. H. McKenzie, Entanglement between a qubit and the environment in the spin-boson model, Phys. Rev. A 68, 034301 (2003) 1050-2947 10.1103/PhysRevA.68.034301.
A. Kopp and K. Le Hur, Universal and measurable entanglement entropy in the spin-boson model, Phys. Rev. Lett. 98, 220401 (2007) 0031-9007 10.1103/PhysRevLett.98.220401.
K. Le Hur, P. Doucet-Beaupré, and W. Hofstetter, Entanglement and criticality in quantum impurity systems, Phys. Rev. Lett. 99, 126801 (2007) 0031-9007 10.1103/PhysRevLett.99.126801.
K. Le Hur, Entanglement entropy, decoherence, and quantum phase transitions of a dissipative two-level system, Ann. Phys. (NY) 323, 3037 (2008) 0003-4916 10.1016/j.aop.2008.04.006.
K. Roszak, Criteria for system-environment entanglement generation for systems of any size in pure-dephasing evolutions, Phys. Rev. A 98, 052344 (2018) 2469-9926 10.1103/PhysRevA.98.052344.
J. Maziero, T. Werlang, F. F. Fanchini, L. C. Céleri, and R. M. Serra, System-reservoir dynamics of quantum and classical correlations, Phys. Rev. A 81, 022116 (2010) 1050-2947 10.1103/PhysRevA.81.022116.
K. Roszak and Ł. Cywiński, Characterization and measurement of qubit-environment-entanglement generation during pure dephasing, Phys. Rev. A 92, 032310 (2015) 1050-2947 10.1103/PhysRevA.92.032310.
K. Roszak and J. K. Korbicz, Entanglement and objectivity in pure dephasing models, Phys. Rev. A 100, 062127 (2019) 2469-9926 10.1103/PhysRevA.100.062127.
G. Garcla-Pérez, D. A. Chisholm, M. A. C. Rossi, M. Palma, and S. Maniscalco, Decoherence without entanglement and quantum Darwinism, Phys. Rev. Res. 2, 012061 (R) (2020) 2643-1564 10.1103/PhysRevResearch.2.012061.
N. Megier, A. Smirne, S. Campbell, and B. Vacchini, Correlations, information backflow, and objectivity in a class of pure dephasing models, Entropy 24, 304 (2022) 1099-4300 10.3390/e24020304.
J. Eisert and M. B. Plenio, Quantum and classical correlations in quantum Brownian motion, Phys. Rev. Lett. 89, 137902 (2002) 0031-9007 10.1103/PhysRevLett.89.137902.
A. O. Caldeira and A. J. Leggett, Quantum tunneling in a dissipative system, Ann. Phys. (NY) 149, 374 (1983) 0003-4916 10.1016/0003-4916(83)90202-6.
A. E. Allahverdyan and T. M. Nieuwenhuizen, Extraction of work from a single thermal bath in the quantum regime, Phys. Rev. Lett. 85, 1799 (2000) 0031-9007 10.1103/PhysRevLett.85.1799.
Th. M. Nieuwenhuizen and A. E. Allahverdyan, Statistical thermodynamics of quantum Brownian motion: Birth of perpetuum mobile of the second kind, Phys. Rev. E 66, 036102 (2002) 1063-651X 10.1103/PhysRevE.66.036102.
A. E. Allahverdyan and T. M. Nieuwenhuizen, Testing the violation of the Clausius inequality in nanoscale electric circuits, Phys. Rev. B 66, 115309 (2002) 0163-1829 10.1103/PhysRevB.66.115309.
C. Hörhammer and H. Büttner, Thermodynamics of quantum Brownian motion with internal degrees of freedom: The role of entanglement in the strong-coupling quantum regime, J. Phys. A: Math. Gen. 38, 7325 (2005) 0305-4470 10.1088/0305-4470/38/33/008.
S. Hilt and E. Lutz, System-bath entanglement in quantum thermodynamics, Phys. Rev. A 79, 010101 (R) (2009) 1050-2947 10.1103/PhysRevA.79.010101.
K. Ptaszyński and M. Esposito, Entropy production in open systems: The predominant role of intraenvironment correlations, Phys. Rev. Lett. 123, 200603 (2019) 0031-9007 10.1103/PhysRevLett.123.200603.
B. de Lima Bernardo, Relating heat and entanglement in strong-coupling thermodynamics, Phys. Rev. E 104, 044111 (2021) 2470-0045 10.1103/PhysRevE.104.044111.
P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961) 0031-899X 10.1103/PhysRev.124.41.
J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians, Phys. Rev. 149, 491 (1966) 0031-899X 10.1103/PhysRev.149.491.
L. Mazzola, C. A. Rodríguez-Rosario, K. Modi, and M. Paternostro, Dynamical role of system-environment correlations in non-Markovian dynamics, Phys. Rev. A 86, 010102 (R) (2012) 1050-2947 10.1103/PhysRevA.86.010102.
A. Smirne, L. Mazzola, M. Paternostro, and B. Vacchini, Interaction-induced correlations and non-Markovianity of quantum dynamics, Phys. Rev. A 87, 052129 (2013) 1050-2947 10.1103/PhysRevA.87.052129.
S. Campbell, M. Popovic, D. Tamascelli, and B. Vacchini, Precursors of non-Markovianity, New J. Phys. 21, 053036 (2019) 1367-2630 10.1088/1367-2630/ab1ed6.
P. Strasberg and M. Esposito, Non-Markovianity and negative entropy production rates, Phys. Rev. E 99, 012120 (2019) 2470-0045 10.1103/PhysRevE.99.012120.
K. Ptaszyński and M. Esposito, Post-thermalization via information spreading in open quantum systems, Phys. Rev. E 106, 014122 (2022) 2470-0045 10.1103/PhysRevE.106.014122.
L. Pucci, M. Esposito, and L. Peliti, Entropy production in quantum Brownian motion, J. Stat. Mech. (2013) P04005 1742-5468 10.1088/1742-5468/2013/04/P04005.
S. Einsiedler, Master's thesis, Albert-Ludwigs-Universität Freiburg, 2020.
A. Colla and H.-P. Breuer, Entropy production and the role of correlations in quantum Brownian motion, Phys. Rev. A 104, 052408 (2021) 2469-9926 10.1103/PhysRevA.104.052408.
K. Ptaszyński and M. Esposito, Quantum and classical contributions to entropy production in fermionic and bosonic Gaussian systems, PRX Quantum 4, 020353 (2023) 2691-3399 10.1103/PRXQuantum.4.020353.
S. Campbell, F. Ciccarello, G. M. Palma, and B. Vacchini, System-environment correlations and Markovian embedding of quantum non-Markovian dynamics, Phys. Rev. A 98, 012142 (2018) 2469-9926 10.1103/PhysRevA.98.012142.
A. Smirne, N. Megier, and B. Vacchini, On the connection between microscopic description and memory effects in open quantum system dynamics, Quantum 5, 439 (2021) 2521-327X 10.22331/q-2021-04-26-439.
S. Shresta, C. Anastopoulos, A. Dragulescu, and B. L. Hu, Non-Markovian qubit dynamics in a thermal field bath: Relaxation, decoherence, and entanglement, Phys. Rev. A 71, 022109 (2005) 1050-2947 10.1103/PhysRevA.71.022109.
R. Kosloff, Quantum thermodynamics: A dynamical viewpoint, Entropy 15, 2100 (2013) 1099-4300 10.3390/e15062100.
A. Pernice and W. T. Strunz, Decoherence and the nature of system-environment correlations, Phys. Rev. A 84, 062121 (2011) 1050-2947 10.1103/PhysRevA.84.062121.
A. Pernice, J. Helm, and W. T. Strunz, System-environment correlations and non-Markovian dynamics, J. Phys. B: At., Mol. Opt. Phys. 45, 154005 (2012) 0953-4075 10.1088/0953-4075/45/15/154005.
P. Szańkowski and Ł. Cywiński, Noise representations of open system dynamics, Sci. Rep. 10, 22189 (2020) 2045-2322 10.1038/s41598-020-78079-7.
A. S. Trushechkin, M. Merkli, J. D. Cresser, and J. Anders, Open quantum system dynamics and the mean force Gibbs state, AVS Quantum Sci. 4, 012301 (2022) 2639-0213 10.1116/5.0073853.
M. J. Gullans and D. A. Huse, Entanglement structure of current-driven diffusive fermion systems, Phys. Rev. X 9, 021007 (2019) 2160-3308 10.1103/PhysRevX.9.021007.
A. Panda and S. Banerjee, Entanglement in nonequilibrium steady states and many-body localization breakdown in a current-driven system, Phys. Rev. B 101, 184201 (2020) 2469-9950 10.1103/PhysRevB.101.184201.
S. Fraenkel and M. Goldstein, Extensive long-range entanglement in a nonequilibrium steady state, SciPost Phys. 15, 134 (2023) 2542-4653 10.21468/SciPostPhys.15.4.134.
V. Eisler, Entanglement negativity in a nonequilibrium steady state, Phys. Rev. B 107, 075157 (2023) 2469-9950 10.1103/PhysRevB.107.075157.
S. Fraenkel and M. Goldstein, Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state, arXiv:2310.16901.
A. Sharma and E. Rabani, Landauer current and mutual information, Phys. Rev. B 91, 085121 (2015) 1098-0121 10.1103/PhysRevB.91.085121.
A. Dey, D. S. Bhakuni, B. K. Agarwalla, and A. Sharma, Quantum entanglement and transport in a non-equilibrium interacting double-dot system: The curious role of degeneracy, J. Phys.: Condens. Matter 32, 075603 (2020) 0953-8984 10.1088/1361-648X/ab5317.
H. S. Sable, D. S. Bhakuni, and A. Sharma, Landauer current and mutual information in a bosonic quantum dot, J. Phys.: Conf. Ser. 964, 012007 (2018) 1742-6588 10.1088/1742-6596/964/1/012007.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).
G. C. Wick, A. S. Wightman, and E. P. Wigner, The intrinsic parity of elementary particles, Phys. Rev. 88, 101 (1952) 0031-899X 10.1103/PhysRev.88.101.
S. Szalay, Z. Zimborás, M. Máté, G. Barcza, C. Schilling, and Ö. Legeza, Fermionic systems for quantum information people, J. Phys. A: Math. Theor. 54, 393001 (2021) 1751-8113 10.1088/1751-8121/ac0646.
N. T. Vidal, M. L. Bera, A. Riera, M. Lewenstein, and M. N. Bera, Quantum operations in an information theory for fermions, Phys. Rev. A 104, 032411 (2021) 2469-9926 10.1103/PhysRevA.104.032411.
M.-C. Bañuls, J. I. Cirac, and M. M. Wolf, Entanglement in fermionic systems, Phys. Rev. A 76, 022311 (2007) 1050-2947 10.1103/PhysRevA.76.022311.
G. M. D'Ariano, F. Manessi, P. Perinotti, and A. Tosini, Fermionic computation is non-local tomographic and violates monogamy of entanglement, Europhys. Lett. 107, 20009 (2014) 0295-5075 10.1209/0295-5075/107/20009.
G. M. D'Ariano, F. Manessi, P. Perinotti, and A. Tosini, The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory, Int. J. Mod. Phys. A 29, 1430025 (2014) 0217-751X 10.1142/S0217751X14300257.
H. M. Wiseman and J. A. Vaccaro, Entanglement of indistinguishable particles shared between two parties, Phys. Rev. Lett. 91, 097902 (2003) 0031-9007 10.1103/PhysRevLett.91.097902.
L. Ding, S. Mardazad, S. Das, S. Szalay, U. Schollwöck, Z. Zimborás, and C. Schilling, Concept of orbital entanglement and correlation in quantum chemistry, J. Chem. Theory Comput. 17, 79 (2021) 1549-9618 10.1021/acs.jctc.0c00559.
L. Ding, Z. Zimborás, and C. Schilling, Quantifying electron entanglement faithfully, arXiv:2207.03377.
J. O. Ernst and F. Tennie, Mode entanglement in fermionic and bosonic harmonium, New J. Phys. (2024), doi: 10.1088/1367-2630/ad240f.
L. Ding, G. Dünnweber, and C. Schilling, Physical entanglement between localized orbitals, Quantum Sci. Technol. 9, 015005 (2024) 2058-9565 10.1088/2058-9565/ad00d9.
A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996) 0031-9007 10.1103/PhysRevLett.77.1413.
M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: Necessary and sufficient conditions, Phys. Lett. A 223, 1 (1996) 0375-9601 10.1016/S0375-9601(96)00706-2.
J. Eisert, Ph.D. thesis, University of Potsdam, 2001.
G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002) 1050-2947 10.1103/PhysRevA.65.032314.
H. Shapourian, K. Shiozaki, and S. Ryu, Partial time-reversal transformation and entanglement negativity in fermionic systems, Phys. Rev. B 95, 165101 (2017) 2469-9950 10.1103/PhysRevB.95.165101.
M. Gruber and V. Eisler, Time evolution of entanglement negativity across a defect, J. Phys. A: Math. Theor. 53, 205301 (2020) 1751-8113 10.1088/1751-8121/ab831c.
S. Murciano, R. Bonsignori, and P. Calabrese, Symmetry decomposition of negativity of massless free fermions, SciPost Phys. 10, 111 (2021) 2542-4653 10.21468/SciPostPhys.10.5.111.
X. Turkeshi, L. Piroli, and M. Schiró, Enhanced entanglement negativity in boundary-driven monitored fermionic chains, Phys. Rev. B 106, 024304 (2022) 2469-9950 10.1103/PhysRevB.106.024304.
H. Shapourian and S. Ryu, Entanglement negativity of fermions: Monotonicity, separability criterion, and classification of few-mode states, Phys. Rev. A 99, 022310 (2019) 2469-9926 10.1103/PhysRevA.99.022310.
C. Spee, K. Schwaiger, G. Giedke, and B. Kraus, Mode entanglement of Gaussian fermionic states, Phys. Rev. A 97, 042325 (2018) 2469-9926 10.1103/PhysRevA.97.042325.
G. Schaller, Open Quantum Systems Far from Equilibrium (Springer, Heidelberg, 2014).
I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A: Math. Gen. 36, L205 (2003) 0305-4470 10.1088/0305-4470/36/14/101.
V. Eisler and I. Peschel, On entanglement evolution across defects in critical chains, Europhys. Lett. 99, 20001 (2012) 0295-5075 10.1209/0295-5075/99/20001.
V. Eisler and Z. Zimborás, On the partial transpose of fermionic Gaussian states, New J. Phys. 17, 053048 (2015) 1367-2630 10.1088/1367-2630/17/5/053048.
A. S. Householder, Unitary triangularization of a nonsymmetric matrix, J. Assoc. Comput. Mach. 5, 339 (1958) 0004-5411 10.1145/320941.320947.
T. Ozaki, Householder Method for Tridiagonalization: Ver. 1.0, https://www.openmx-square.org/tech_notes/tech10-1_0/tech10-1_0.html
S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, A tunable Kondo effect in quantum dots, Science 281, 540 (1998) 0036-8075 10.1126/science.281.5376.540.
A. Svilans, M. Leijnse, and H. Linke, Experiments on the thermoelectric properties of quantum dots, C. R. Physique 17, 1096 (2016) 10.1016/j.crhy.2016.08.002.
K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, Dynamics of quantum entanglement, Phys. Rev. A 65, 012101 (2001) 1050-2947 10.1103/PhysRevA.65.012101.
T. Yu and J. H. Eberly, Sudden death of entanglement, Science 323, 598 (2009) 0036-8075 10.1126/science.1167343.
M. Asoudeh and V. Karimipour, Thermal entanglement of spins in an inhomogeneous magnetic field, Phys. Rev. A 71, 022308 (2005) 1050-2947 10.1103/PhysRevA.71.022308.
G.-F. Zhang and S.-S. Li, Thermal entanglement in a two-qubit Heisenberg (Equation presented) spin chain under an inhomogeneous magnetic field, Phys. Rev. A 72, 034302 (2005) 1050-2947 10.1103/PhysRevA.72.034302.
J. Bauer, C. Salomon, and E. Demler, Realizing a Kondo-correlated state with ultracold atoms, Phys. Rev. Lett. 111, 215304 (2013) 0031-9007 10.1103/PhysRevLett.111.215304.
K. Ptaszyński and M. Esposito, Ensemble dependence of information-theoretic contributions to the entropy production, Phys. Rev. E 107, L052102 (2023) 2470-0045 10.1103/PhysRevE.107.L052102.
Z. Ma, C. Han, Y. Meir, and E. Sela, Symmetric inseparability and number entanglement in charge-conserving mixed states, Phys. Rev. A 105, 042416 (2022) 2469-9926 10.1103/PhysRevA.105.042416.
A. Botero and B. Reznik, Modewise entanglement of Gaussian states, Phys. Rev. A 67, 052311 (2003) 1050-2947 10.1103/PhysRevA.67.052311.
G. Adesso, A. Serafini, and F. Illuminati, Determination of continuous variable entanglement by purity measurements, Phys. Rev. Lett. 92, 087901 (2004) 0031-9007 10.1103/PhysRevLett.92.087901.
A. Serafini, G. Adesso, and F. Illuminati, Unitarily localizable entanglement of Gaussian states, Phys. Rev. A 71, 032349 (2005) 1050-2947 10.1103/PhysRevA.71.032349.
M. V. Fischetti, Theory of electron transport in small semiconductor devices using the Pauli master equation, J. Appl. Phys. 83, 270 (1998) 0021-8979 10.1063/1.367149.
A. Frigerio and V. Gorini, (Equation presented)-level systems in contact with a singular reservoir. II, J. Math. Phys. 17, 2123 (1976) 0022-2488 10.1063/1.522854.
H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
S. Cusumano, V. Cavina, M. Keck, A. De Pasquale, and V. Giovannetti, Entropy production and asymptotic factorization via thermalization: A collisional model approach, Phys. Rev. A 98, 032119 (2018) 2469-9926 10.1103/PhysRevA.98.032119.
T. Salamon, M. Płodzień, M. Lewenstein, and K. Roszak, Qubit-environment entanglement outside of pure decoherence: Hyperfine interaction, Phys. Rev. B 107, 085428 (2023) 2469-9950 10.1103/PhysRevB.107.085428.
T. Salamon and K. Roszak, Entanglement generation between a charge qubit and its bosonic environment during pure dephasing: Dependence on the environment size, Phys. Rev. A 96, 032333 (2017) 2469-9926 10.1103/PhysRevA.96.032333.
M. Bartkowiak, A. Miranowicz, X. Wang, Y. Liu, W. Leoński, and F. Nori, Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses, Phys. Rev. A 83, 053814 (2011) 1050-2947 10.1103/PhysRevA.83.053814.
G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Phys. Rep. 694, 1 (2017) 0370-1573 10.1016/j.physrep.2017.05.008.
C. Y. Cai, L.-P. Yang, and C. P. Sun, Threshold for nonthermal stabilization of open quantum systems, Phys. Rev. A 89, 012128 (2014) 1050-2947 10.1103/PhysRevA.89.012128.
H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and F. Nori, Non-Markovian complexity in the quantum-to-classical transition, Sci. Rep. 5, 13353 (2015) 2045-2322 10.1038/srep13353.
P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, Master equation approach to transient quantum transport in nanostructures incorporating initial correlations, Phys. Rev. B 92, 165403 (2015) 1098-0121 10.1103/PhysRevB.92.165403.
É. Jussiau, M. Hasegawa, and R. S. Whitney, Signature of the transition to a bound state in thermoelectric quantum transport, Phys. Rev. B 100, 115411 (2019) 2469-9950 10.1103/PhysRevB.100.115411.
N. J. Cerf and C. Adami, Negative entropy and information in quantum mechanics, Phys. Rev. Lett. 79, 5194 (1997) 0031-9007 10.1103/PhysRevLett.79.5194.
K. G. H. Vollbrecht and M. M. Wolf, Conditional entropies and their relation to entanglement criteria, J. Math. Phys. 43, 4299 (2002) 0022-2488 10.1063/1.1498490.
M. M. Ali and W.-M. Zhang, Nonequilibrium transient dynamics of photon statistics, Phys. Rev. A 95, 033830 (2017) 2469-9926 10.1103/PhysRevA.95.033830.
F. B. Anders and A. Schiller, Real-time dynamics in quantum-impurity systems: A time-dependent numerical renormalization-group approach, Phys. Rev. Lett. 95, 196801 (2005) 0031-9007 10.1103/PhysRevLett.95.196801.
F. B. Anders and A. Schiller, Spin precession and real-time dynamics in the Kondo model: Time-dependent numerical renormalization-group study, Phys. Rev. B 74, 245113 (2006) 1098-0121 10.1103/PhysRevB.74.245113.