Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Enhanced Demodulator for 5G NTN using Spatio-Temporal Attention Convolutional Autoencoder and Akida Brainchip SNN
VARADARAJULU, Swetha; OLIVEIRA KUHFUSS DE MENDONÇA, Marcele; EAPPEN, Geoffrey et al.
2024The conference at which the Contributor proposes to present the Content, titled: 41st International Communications Satellite Systems Conference (ICSSC 2024)
Editorial reviewed
 

Documents


Texte intégral
Channel_Estimation_Equalisation_CNN_SNN_Akida_ICSSC_Conf-18.pdf
Postprint Auteur (730.1 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
CNN-STAN; Channel estimation; CNN2SNN; Akida Brainchip
Résumé :
[en] This paper presents a novel approach to overcoming challenges in 5G and 6G mobile satellite systems (MSS) in Low Earth Orbit (LEO), focusing on Non-Line-of-Sight (NLOS) issues in 5G Non-Terrestrial Networks (NTN) that connect directly with handheld devices. We utilize a Convolutional Neural Network (CNN) with a Spatio-Temporal Attention Network (STAN) au- toencoder, which is then converted into a Spiking Neural Network (SNN) using Brainchip Akida’s Meta TF Software Framework. This integration of neuromorphic processing aims to enhance energy efficiency, reduce computational demands, and increase data transmission rates, optimizing Channel State Information (CSI) in compliance with 3GPP standards. Our STAN-CNN- SNN architecture achieves a 85% reduction in computational requirements, leading to decrease in power consumption, and increase in data rates within the C-Band spectrum. Simulations with LEO satellite MSS parameters demonstrate significant advancements in communication systems. The numerical results demonstrates substantial computational reductions with minimal capacity trade-offs.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM - Signal Processing & Communications
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VARADARAJULU, Swetha  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OLIVEIRA KUHFUSS DE MENDONÇA, Marcele  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
EAPPEN, Geoffrey ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SigCom > Team Symeon CHATZINOTAS
QUEROL, Jorge  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Enhanced Demodulator for 5G NTN using Spatio-Temporal Attention Convolutional Autoencoder and Akida Brainchip SNN
Date de publication/diffusion :
24 septembre 2024
Nombre de pages :
1-6
Nom de la manifestation :
The conference at which the Contributor proposes to present the Content, titled: 41st International Communications Satellite Systems Conference (ICSSC 2024)
Lieu de la manifestation :
Seattle, Etats-Unis
Date de la manifestation :
24-27 September, 2024
Sur invitation :
Oui
Peer reviewed :
Editorial reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
Tan
Intitulé du projet de recherche :
U-AGR-8297 - ESA-TANNDEM - QUEROL Jorge
Disponible sur ORBilu :
depuis le 18 décembre 2024

Statistiques


Nombre de vues
122 (dont 15 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu