Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Graph Neural Network Pooling for BCH Channel Decoding in Software Defined Satellites
VARADARAJULU, Swetha; Baeza, Victor Monzon; QUEROL, Jorge et al.
2024In Valenti, Matthew (Ed.) 2024 IEEE International Conference on Communications Workshops, ICC Workshops 2024
Editorial reviewed
 

Documents


Texte intégral
Graph Neural Network.pdf
Postprint Auteur (803.69 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
BCH codes; channel decoding; DL; GNN; BCH code; Channel decoding; Correction methodology; Deep learning; Errors correction; Graph neural networks; Graph structured data; Learning techniques; Performance tradeoff; Physical layers; Safety, Risk, Reliability and Quality; Control and Optimization; Artificial Intelligence; Computer Networks and Communications; Computer Science Applications; Signal Processing; Information Systems and Management; Renewable Energy, Sustainability and the Environment
Résumé :
[en] This paper delves into the transformative impact of Deep Learning (DL) techniques on decoding tasks at the physical layer onboard regenerative software-defined satellites, reshaping traditional error correction methodologies. Specifically, we focus on the integration of Graph Neural Networks (GNNs) for channel decoding, which offers a fresh perspective by adeptly handling graph-structured data and effectively modelling intricate interference and channel dependencies. The study systematically explores the potential performance tradeoffs that arise from modifying the graph structure. Furthermore, we extend our investigation by implementing the message-passing algorithm with GNN, employing a topk pooling method following pick, prune, and link optimization strategies. This strategic approach aims to mitigate computational complexity and minimize latency, by 30 to 35 % which is particularly advantageous for decoding BCH codes. This advancement promises to enhance the efficiency of communication systems sianificantly
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM - Signal Processing & Communications
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VARADARAJULU, Swetha  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Baeza, Victor Monzon;  University of Luxembourg, Interdisciplinary Centre for Security Reliability and Trust (SnT), Luxembourg
QUEROL, Jorge  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OLIVEIRA KUHFUSS DE MENDONÇA, Marcele  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Graph Neural Network Pooling for BCH Channel Decoding in Software Defined Satellites
Titre original :
[en] Graph Neural Network Pooling for BCH Channel Decoding in Software Defined Satellites
Date de publication/diffusion :
09 juin 2024
Nom de la manifestation :
2024 IEEE International Conference on Communications Workshops (ICC Workshops)
Lieu de la manifestation :
Denver, Usa
Date de la manifestation :
09-06-2024 => 13-06-2024
Sur invitation :
Oui
Titre de l'ouvrage principal :
2024 IEEE International Conference on Communications Workshops, ICC Workshops 2024
Editeur scientifique :
Valenti, Matthew
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc., Piscataway, Etats-Unis - New Jersey
ISBN/EAN :
9798350304053
Pagination :
1-6
Peer reviewed :
Editorial reviewed
Focus Area :
Security, Reliability and Trust
Organisme subsidiant :
IEEE Communications Society
Disponible sur ORBilu :
depuis le 18 décembre 2024

Statistiques


Nombre de vues
74 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu