Biomarkers; Circular RNAs; Out-of-hospital cardiac arrest; Prognostication; Emergency Medicine; Critical Care and Intensive Care Medicine; Physiology (medical)
Abstract :
[en] [en] BACKGROUND: Cardiac arrest (CA) represents the third leading cause of death worldwide. Among patients resuscitated and admitted to hospital, death and severe neurological sequelae are frequent but difficult to predict. Blood biomarkers offer clinicians the potential to improve prognostication. Previous studies suggest that circulating non-coding RNAs constitute a reservoir of novel biomarkers. Therefore, this study aims to identify circulating circular RNAs (circRNAs) associated with clinical outcome after CA.
RESULTS: Whole blood samples obtained 48 h after return of spontaneous circulation in 588 survivors from CA enrolled in the Target Temperature Management trial (TTM) were used in this study. Whole transcriptome RNA sequencing in 2 groups of 23 sex-matched patients identified 28 circRNAs associated with neurological outcome and survival. The circRNA circNFAT5 was selected for further analysis using quantitative PCR. In the TTM-trial (n = 542), circNFAT5 was upregulated in patients with poor outcome as compared to patients with good neurological outcome (p < 0.001). This increase was independent of TTM regimen and sex. The adjusted odds ratio of circNFAT5 to predict neurological outcome was 1.39 [1.07-1.83] (OR [95% confidence interval]). CircNFAT5 predicted 6-month survival with an adjusted hazard ratio of 1.31 [1.13-1.52].
CONCLUSION: We identified circulating circRNAs associated with clinical outcome after CA, among which circNFAT5 may have potential to aid in predicting neurological outcome and survival when used in combination with established biomarkers of CA.
Disciplines :
Anesthesia & intensive care
Author, co-author :
Stefanizzi, Francesca M; Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg
Zhang, Lu; Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg
Salgado-Somoza, Antonio; Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg
Dankiewicz, Josef; Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, 221 85, Lund, Sweden
STAMMET, Pascal ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) > Medical Education ; Department of Intensive Care Medicine, Centre Hospitalier de Luxembourg, 1210, Luxembourg, Luxembourg
Hassager, Christian; Department of Cardiology B, The Heart Centre, Rigshospitalet University Hospital, 2100, Copenhagen, Denmark
Wise, Matthew P; Department of Intensive Care, University Hospital of Wales, Cardiff, CF14 4XW, UK
Friberg, Hans; Department of Anesthesia and Intensive Care, Clinical Sciences, Lund University and Skane University Hospital, 221 85, Malmö, Sweden
Cronberg, Tobias; Department of Neurology and Rehabilitation Medicine, Clinical Sciences, Lund University and Skane University Hospital, 221 85, Lund, Sweden
Hundt, Alexander; Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
Kjaergaard, Jesper; Department of Cardiology B, The Heart Centre, Rigshospitalet University Hospital, 2100, Copenhagen, Denmark
Nielsen, Niklas; Department of Anesthesia and Intensive Care, Clinical Sciences, Lund University and Helsingborg Hospital, 25187, Lund, Sweden
DEVAUX, Yvan ; University of Luxembourg ; Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg. yvan.devaux@lih.lu
Vetenskapsrådet Hjärt-Lungfonden Stig and Ragna Gorthon Foundation Knutsson Foundation Laerdal Foundation for Acute Medicine Hans-Gabriel och Alice Trolle-Wachtmeisters stiftelse för medicinsk forskning Regional Research Support in Region Skane Governmental funding of clinical research within the Swedish National Health Service Fonds National de la Recherche Luxembourg Ministère de l'Enseignement Supérieur et de la Recherche Heart Foundation Daniel Wagner
Funding text :
This work is supported by independent research grants from nonprofit or governmental agencies (the Swedish Research Council [Vetenskapsrådet], Swedish Heart–Lung Foundation, Stig and Ragna Gorthon Foundation, Knutsson Foundation, Laerdal Foundation, Hans-Gabriel and Alice Trolle-Wachtmeister Foundation for Medical Research, and Regional Research Support in Region Skåne) and by governmental funding of clinical research within the Swedish National Health Service. YD is supported by the National Research Fund of Luxembourg (Grants # C14/BM/8225223 and C17/BM/11613033), the Ministry of Higher Education and Research of Luxembourg, and the Heart Foundation—Daniel Wagner. FMS is supported by the National Research Fund of Luxembourg (Grant # C17/BM/11613033).
Wong CX, Brown A, Lau DH, Chugh SS, Albert CM, Kalman JM, Sanders P (2019) Epidemiology of sudden cardiac death: global and regional perspectives. Heart Lung Circ 28:6–14 DOI: 10.1016/j.hlc.2018.08.026
Grasner JT, Herlitz J, Tjelmeland IBM, Wnent J, Masterson S, Lilja G, Bein B, Bottiger BW, Rosell-Ortiz F, Nolan JP, Bossaert L, Perkins GD (2021) European resuscitation council guidelines 2021: epidemiology of cardiac arrest in Europe. Resuscitation 161:61–79 DOI: 10.1016/j.resuscitation.2021.02.007
Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, Neumar RW, O’Neil BJ, Paxton JH, Silvers SM, White RD, Yannopoulos D, Donnino MW (2015) Part 7: adult advanced cardiovascular life support: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132:S444-464 DOI: 10.1161/CIR.0000000000000261
Ryoo SM, Jeon SB, Sohn CH, Ahn S, Han C, Lee BK, Lee DH, Kim SH, Donnino MW, Kim WY, Korean Hypothermia Network I (2015) Predicting outcome with diffusion-weighted imaging in cardiac arrest patients receiving hypothermia therapy: multicenter retrospective cohort study. Crit Care Med 43:2370–2377 DOI: 10.1097/CCM.0000000000001263
Karapetkova M, Koenig MA, Jia X (2016) Early prognostication markers in cardiac arrest patients treated with hypothermia. Eur J Neurol 23:476–488 DOI: 10.1111/ene.12803
Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, Horn J, Devaux Y, Erlinge D, Kjaergaard J, Gasche Y, Wanscher M, Cronberg T, Friberg H, Wetterslev J, Pellis T, Kuiper M, Gilson G, Nielsen N, Investigators TT-T (2015) Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. J Am Coll Cardiol 65:2104–2114 DOI: 10.1016/j.jacc.2015.03.538
Luescher T, Mueller J, Isenschmid C, Kalt J, Rasiah R, Tondorf T, Gamp M, Becker C, Sutter R, Tisljar K, Schuetz P, Marsch S, Hunziker S (2019) Neuron-specific enolase (NSE) improves clinical risk scores for prediction of neurological outcome and death in cardiac arrest patients: results from a prospective trial. Resuscitation 142:50–60 DOI: 10.1016/j.resuscitation.2019.07.003
Streitberger KJ, Leithner C, Wattenberg M, Tonner PH, Hasslacher J, Joannidis M, Pellis T, Di Luca E, Fodisch M, Krannich A, Ploner CJ, Storm C (2017) Neuron-specific enolase predicts poor outcome after cardiac arrest and targeted temperature management: a multicenter study on 1,053 patients. Crit Care Med 45:1145–1151 DOI: 10.1097/CCM.0000000000002335
Moseby-Knappe M, Mattsson N, Nielsen N, Zetterberg H, Blennow K, Dankiewicz J, Dragancea I, Friberg H, Lilja G, Insel PS, Rylander C, Westhall E, Kjaergaard J, Wise MP, Hassager C, Kuiper MA, Stammet P, Wanscher MCJ, Wetterslev J, Erlinge D, Horn J, Pellis T, Cronberg T (2019) Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol 76:64–71 DOI: 10.1001/jamaneurol.2018.3223
Stammet P, Dankiewicz J, Nielsen N, Fays F, Collignon O, Hassager C, Wanscher M, Unden J, Wetterslev J, Pellis T, Aneman A, Hovdenes J, Wise MP, Gilson G, Erlinge D, Horn J, Cronberg T, Kuiper M, Kjaergaard J, Gasche Y, Devaux Y, Friberg H, Target Temperature Management after Out-of-Hospital Cardiac Arrest trial i (2017) Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. Crit Care 21:153 DOI: 10.1186/s13054-017-1729-7
Kleissner M, Sramko M, Kohoutek J, Kautzner J, Kettner J (2021) Serum S100 protein is a reliable predictor of brain injury after out-of-hospital cardiac arrest: a cohort study. Front Cardiovasc Med 8:624825 DOI: 10.3389/fcvm.2021.624825
Rundgren M, Karlsson T, Nielsen N, Cronberg T, Johnsson P, Friberg H (2009) Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation 80:784–789 DOI: 10.1016/j.resuscitation.2009.03.025
Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, Redl H, Bahrami S (2005) Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock 24:119–123 DOI: 10.1097/01.shk.0000168876.68154.43
Burghuber OC, Worofka B, Schernthaner G, Vetter N, Neumann M, Dudczak R, Kuzmits R (1990) Serum neuron-specific enolase is a useful tumor marker for small cell lung cancer. Cancer 65:1386–1390 DOI: 10.1002/1097-0142(19900315)65:6<1386::AID-CNCR2820650623>3.0.CO;2-9
DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, Correale JD (1996) Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. Epilepsia 37:606–609 DOI: 10.1111/j.1528-1157.1996.tb00623.x
Lu D, Thum T (2019) RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol 16:661–674 DOI: 10.1038/s41569-019-0218-x
Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C, Devaux Y, Action EU-CC (2020) Regulatory RNAs in heart failure. Circulation 141:313–328 DOI: 10.1161/CIRCULATIONAHA.119.042474
Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274 DOI: 10.1016/j.ebiom.2018.07.036
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338 DOI: 10.1038/nature11928
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157 DOI: 10.1261/rna.035667.112
Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461 DOI: 10.1038/nbt.2890
Aufiero S, Reckman YJ, Pinto YM, Creemers EE (2019) Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 16:503–514 DOI: 10.1038/s41569-019-0185-2
Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, Tan SH, Chan EWL, Bhattamisra SK, Rajendran R, Candasamy M (2019) The roles of circular RNAs in human development and diseases. Biomed Pharmacother 111:198–208 DOI: 10.1016/j.biopha.2018.12.052
Vausort M, Salgado-Somoza A, Zhang L, Leszek P, Scholz M, Teren A, Burkhardt R, Thiery J, Wagner DR, Devaux Y (2016) Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol 68:1247–1248 DOI: 10.1016/j.jacc.2016.06.040
Salgado-Somoza A, Zhang L, Vausort M, Devaux Y (2017) The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 17:33–36
Devaux Y, Creemers EE, Boon RA, Werfel S, Thum T, Engelhardt S, Dimmeler S, Squire I, Cardiolinc n (2017) Circular RNAs in heart failure. Eur J Heart Fail 19:701–709 DOI: 10.1002/ejhf.801
Gratz C, Bui MLU, Thaqi G, Kirchner B, Loewe RP, Pfaffl MW (2022) Obtaining reliable RT-qPCR results in molecular diagnostics-MIQE goals and pitfalls for transcriptional biomarker discovery. Life (Basel) 12
Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Kober L, Langorgen J, Lilja G, Moller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, Investigators TTMT (2013) Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med 369:2197–2206 DOI: 10.1056/NEJMoa1310519
Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullen S, Rylander C, Wise MP, Oddo M, Cariou A, Belohlavek J, Hovdenes J, Saxena M, Kirkegaard H, Young PJ, Pelosi P, Storm C, Taccone FS, Joannidis M, Callaway C, Eastwood GM, Morgan MPG, Nordberg P, Erlinge D, Nichol AD, Chew MS, Hollenberg J, Thomas M, Bewley J, Sweet K, Grejs AM, Christensen S, Haenggi M, Levis A, Lundin A, During J, Schmidbauer S, Keeble TR, Karamasis GV, Schrag C, Faessler E, Smid O, Otahal M, Maggiorini M, Wendel Garcia PD, Jaubert P, Cole JM, Solar M, Borgquist O, Leithner C, Abed-Maillard S, Navarra L, Annborn M, Unden J, Brunetti I, Awad A, McGuigan P, Bjorkholt Olsen R, Cassina T, Vignon P, Langeland H, Lange T, Friberg H, Nielsen N, Investigators TTMT (2021) Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 384:2283–2294 DOI: 10.1056/NEJMoa2100591
Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, Brunetti I, Cranshaw J, Cronberg T, Edqvist K, Erlinge D, Gasche Y, Glover G, Hassager C, Horn J, Hovdenes J, Johnsson J, Kjaergaard J, Kuiper M, Langorgen J, Macken L, Martinell L, Martner P, Pellis T, Pelosi P, Petersen P, Persson S, Rundgren M, Saxena M, Svensson R, Stammet P, Thoren A, Unden J, Walden A, Wallskog J, Wanscher M, Wise MP, Wyon N, Aneman A, Friberg H (2012) Target temperature Management after out-of-hospital cardiac arrest–a randomized, parallel-group, assessor-blinded clinical trial–rationale and design. Am Heart J 163:541–548 DOI: 10.1016/j.ahj.2012.01.013
Nielsen N, Winkel P, Cronberg T, Erlinge D, Friberg H, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Wetterslev J (2013) Detailed statistical analysis plan for the target temperature management after out-of-hospital cardiac arrest trial. Trials 14:300 DOI: 10.1186/1745-6215-14-300
Devaux Y, Dankiewicz J, Salgado-Somoza A, Stammet P, Collignon O, Gilje P, Gidlof O, Zhang L, Vausort M, Hassager C, Wise MP, Kuiper M, Friberg H, Cronberg T, Erlinge D, Nielsen N, for Target Temperature Management After Cardiac Arrest Trial I (2016) Association of circulating MicroRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest: a substudy of a randomized clinical trial. JAMA Cardiol 1:305–313 DOI: 10.1001/jamacardio.2016.0480
Devaux Y, Salgado-Somoza A, Dankiewicz J, Boileau A, Stammet P, Schritz A, Zhang L, Vausort M, Gilje P, Erlinge D, Hassager C, Wise MP, Kuiper M, Friberg H, Nielsen N, investigators TT-t (2017) Incremental value of circulating MiR-122-5p to predict outcome after out of hospital cardiac arrest. Theranostics 7:2555–2564 DOI: 10.7150/thno.19851
Shao T, Pan YH, Xiong XD (2021) Circular RNA: an important player with multiple facets to regulate its parental gene expression. Mol Ther Nucleic Acids 23:369–376 DOI: 10.1016/j.omtn.2020.11.008
Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475–490 DOI: 10.1038/s41580-020-0243-y
Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R, Li H (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett 414:301–309 DOI: 10.1016/j.canlet.2017.11.022
Ghanbarian AT, Hurst LD (2015) Neighboring genes show correlated evolution in gene expression. Mol Biol Evol 32:1748–1766 DOI: 10.1093/molbev/msv053
Michalak P (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 91:243–248 DOI: 10.1016/j.ygeno.2007.11.002
O’Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK (2007) A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 120:149–159 DOI: 10.1242/jcs.03307
Adachi A, Takahashi T, Ogata T, Imoto-Tsubakimoto H, Nakanishi N, Ueyama T, Matsubara H (2012) NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation. Biochem Biophys Res Commun 426:317–323 DOI: 10.1016/j.bbrc.2012.08.069
Loyher ML, Mutin M, Woo SK, Kwon HM, Tappaz ML (2004) Transcription factor tonicity-responsive enhancer-binding protein (TonEBP) which transactivates osmoprotective genes is expressed and upregulated following acute systemic hypertonicity in neurons in brain. Neuroscience 124:89–104 DOI: 10.1016/j.neuroscience.2003.10.025
Trama J, Lu Q, Hawley RG, Ho SN (2000) The NFAT-related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin-dependent manner. J Immunol 165:4884–4894 DOI: 10.4049/jimmunol.165.9.4884
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15:545–552 DOI: 10.1038/nm.1960
Ma P, Zha S, Shen X, Zhao Y, Li L, Yang L, Lei M, Liu W (2019) NFAT5 mediates hypertonic stress-induced atherosclerosis via activating NLRP3 inflammasome in endothelium. Cell Commun Signal 17:102 DOI: 10.1186/s12964-019-0406-7
Neuhofer W (2010) Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr Genomics 11:584–590 DOI: 10.2174/138920210793360961
Cen L, Xing F, Xu L, Cao Y (2020) Potential role of gene regulator NFAT5 in the pathogenesis of diabetes mellitus. J Diabetes Res 2020:6927429 DOI: 10.1155/2020/6927429