[en] Non-terrestrial networks aim to extend wireless communications capabilities beyond traditional terrestrial infrastructure by utilizing various platforms such as satellites, high-altitude platform stations (HAPS), and unmanned aerial vehicles to provide global or localized coverage. However, improving data rates in non-terrestrial cooperative communications (NTCC) networks presents unique challenges, necessitating innovative solutions. This paper presents a novel approach to enhance the request–response ratio (RRR) of NTCC in time asynchrony. By leveraging the advantages of HAPS, such as wide coverage, high altitude, and flexible deployment, we aim to optimize the performance of NTCC networks. We formulate an optimization problem considering the simultaneous connection between the HAPS and ground users, power distribution, and decoding order. The joint optimization problem is formulated as non-convex-non-linear and is also NP-hard, making it very challenging to obtain a globally optimal solution. To reduce the complexity of the problem and make it more tractable, we decouple it into subproblems and achieve an efficient solution in two steps. In the first step, we use the Gale–Shapley algorithm to solve the many-to-many two-sided matching problem of HAPS user terminal association, given the fixed decoding and power allocation. Then, we solve the decoding order and power allocation problem using the Dinkeback-like algorithm, given the optimal association in the second step. Our proposed method iteratively updates the preference lists, mitigating interference among HAPS and enhancing overall system performance. Through extensive simulations, we demonstrate that implementing our proposed schemes achieves high RRR compared to benchmark schemes. Additionally, when temporal asynchrony is employed alongside our approach, there is an increase in the overall performance obtained from the process.
Disciplines :
Computer science
Author, co-author :
Dutta, Ashit Kumar; Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
Alruwais, Nuha; Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, Riyadh, Saudi Arabia
Alabdulkreem, Eatedal; Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Negm, Noha; Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Saudi Arabia
Darem, Abdulbasit A. ; Department of Computer Science at College of Science, Northern Border University, Arar, Saudi Arabia
Al Duhayyim, Mesfer; Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
KHAN, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Nauman, Ali; School of Computer Science and Engineering Yeungnam University, Gyeongsan, South Korea
External co-authors :
yes
Language :
English
Title :
Fair resource optimization for cooperative non-terrestrial vehicular networks
Original title :
[en] Fair resource optimization for cooperative non-terrestrial vehicular networks
This work was supported by the Researchers Supporting Project Number (MHIRSP2024005) Almaarefa University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/86/45. Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R161), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Research Supporting Project number (RSPD2024R608), King Saud University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number \u201CNBU-FFR-2024-2903-04\u201D. This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).
Khan, W.U., Ali, Z., Lagunas, E., Mahmood, A., Asif, M., Ihsan, A., Chatzinotas, S., Ottersten, B., Dobre, O.A., Rate splitting multiple access for next generation cognitive radio enabled LEO satellite networks. IEEE Trans. Wireless Commun., 2023.
Guo, K., Shuai, H., An, K., Zhou, F., Tsiftsis, T.A., Li, X., Wu, M., Power allocation and performance evaluation for NOMA-aided integrated satellite-HAP-terrestrial networks under practical limitations. IEEE Internet Things J. 11:7 (2024), 13002–13017.
Wang, S., Yang, L., Li, X., Guo, K., Liu, H., Song, H., Jhaveri, R.H., Performance analysis of satellite-vehicle networks with a non-terrestrial vehicle. IEEE Trans. Intell. Veh. 9:1 (2024), 1691–1700.
Guo, K., Shuai, H., Li, X., Yang, L., Tsiftsis, T.A., Nallanathan, A., Wu, M., Two-way satellite-HAP-terrestrial networks with non-orthogonal multiple access. IEEE Trans. Veh. Technol. 73:1 (2024), 964–979.
Wahid, A., Ahmed, M., Laique, S.S., Khan, W.U., Ihsan, A., Xu, F., Chatzinotas, S., Han, Z., A Survey on STAR-RIS: Use Cases, Recent Advances, and Future Research Challenges. 2023, TechRxiv.
Alam, M.S., Kurt, G.K., Yanikomeroglu, H., Zhu, P., Đào, N.D., High altitude platform station based super macro base station constellations. IEEE Commun. Mag. 59:1 (2021), 103–109.
S.R. Kassa, K. Barman, D. Kosale, A most promising HAPs technology for next generation wireless communication systems, in: Proceedings of the 4th National Conference, 2010, pp. 1–6.
Zhang, L., Zhao, H., Hou, S., Zhao, Z., Xu, H., Wu, X., Wu, Q., Zhang, R., A survey on 5G millimeter wave communications for UAV-assisted wireless networks. IEEE Access 7 (2019), 117460–117504.
Hokazono, Y., Kohara, H., Kishiyama, Y., Asai, T., 3D-cell control technology for frequency sharing between HAPS and terrestrial systems. 2022 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, IWEM, 2022, IEEE, 99–100.
Tekbıyık, K., Kurt, G.K., Ekti, A.R., Yanikomeroglu, H., Reconfigurable intelligent surfaces in action for nonterrestrial networks. IEEE Veh. Technol. Mag. 17:3 (2022), 45–53.
Shah, A.A., Ehsan, M.K., Ishaq, K., Ali, Z., Farooq, M.S., An efficient hybrid classifier model for anomaly intrusion detection system. IJCSNS, 18(11), 2018, 127.
Yeh, C., Do Jo, G., Ko, Y.-J., Chung, H.K., Perspectives on 6G wireless communications. ICT Express 9:1 (2023), 82–91.
Guo, C., Gong, C., Xu, H., Zhang, L., Han, Z., A dynamic handover software-defined transmission control scheme in space-air-ground integrated networks. IEEE Trans. Wireless Commun. 21:8 (2022), 6110–6124.
Alfattani, S., Yadav, A., Yanikomeroglu, H., Yongacoglu, A., Resource-efficient HAPS-RIS enabled beyond-cell communications. IEEE Wirel. Commun. Lett., 2023.
Sziroczak, D., Rohacs, D., Rohacs, J., Review of using small UAV based meteorological measurements for road weather management. Prog. Aerosp. Sci., 134, 2022, 100859.
Zhang, L., Ma, X., Zhuang, Z., Xu, H., Sharma, V., Han, Z., Q-Learning aided intelligent routing with maximum utility in cognitive UAV swarm for emergency communications. IEEE Trans. Veh. Technol. 72:3 (2023), 3707–3723.
Giordani, M., Zorzi, M., Non-terrestrial networks in the 6G era: Challenges and opportunities. IEEE Netw. 35:2 (2020), 244–251.
Ke, M., Gao, Z., Huang, Y., Ding, G., Ng, D.W.K., Wu, Q., Zhang, J., An edge computing paradigm for massive IoT connectivity over high-altitude platform networks. IEEE Wirel. Commun. 28:5 (2021), 102–109.
Khan, W.U., Jamshed, M.A., Lagunas, E., Chatzinotas, S., Li, X., Ottersten, B., Energy efficiency optimization for backscatter enhanced NOMA cooperative V2X communications under imperfect CSI. IEEE Trans. Intell. Transp. Syst., 2022.
Ahmed, M., Shahwar, M., Khan, F., Khan, W.U., Ihsan, A., Khan, U.S., Xu, F., Chatzinotas, S., NOMA-based backscatter communications: Fundamentals, applications, and advancements. IEEE Internet Things J., 2024, 1.
Alexandre, L.C., Linhares, A., Neto, G., Sodre, A.C., High-altitude platform stations as IMT base stations: Connectivity from the stratosphere. IEEE Commun. Mag. 59:12 (2021), 30–35.
Khan, W.U., Ali, Z., Lagunas, E., Chatzinotas, S., Ottersten, B., Rate splitting multiple access for cognitive radio GEO-LEO co-existing satellite networks. GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022, IEEE, 5165–5170.
Lin, X., Rommer, S., Euler, S., Yavuz, E.A., Karlsson, R.S., 5G from space: An overview of 3GPP non-terrestrial networks. IEEE Commun. Stand. Mag. 5:4 (2021), 147–153.
Khan, W.U., Lagunas, E., Mahmood, A., ElHalawany, B.M., Chatzinotas, S., Ottersten, B., When RIS meets GEO satellite communications: A new sustainable optimization framework in 6G. 2022 IEEE 95th Vehicular Technology Conference, VTC2022-Spring, 2022, IEEE, 1–6.
Shamsabadi, A.A., Yadav, A., Abbasi, O., Yanikomeroglu, H., Handling interference in integrated HAPS-terrestrial networks through radio resource management. IEEE Wirel. Commun. Lett. 11:12 (2022), 2585–2589.
Chen, S., Sun, S., Kang, S., System integration of terrestrial mobile communication and satellite communication—the trends, challenges and key technologies in B5G and 6G. Chin. Commun. 17:12 (2020), 156–171.
W.U. Khan, E. Lagunas, A. Mahmood, S. Chatzinotas, B. Ottersten, Energy-Efficient RIS-Enabled NOMA Communication for 6G LEO Satellite Networks, in: 2023 IEEE 97th Vehicular Technology Conference, VTC2023-Spring, 2023, pp. 1–6.
Khan, W.U., Lagunas, E., Mahmood, A., Chatzinotas, S., Ottersten, B., RIS-assisted energy-efficient LEO satellite communications with NOMA. IEEE Trans. Green Commun. Netw., 2023, 1.
Hajipour, P., Shahzadi, A., Ghazi-Maghrebi, S., Interference management for spectral coexistence in a heterogeneous satellite network. Int. J. Satell. Commun. Netw. 38:3 (2020), 229–253.
Heyn, T., Hofmann, A., Raghunandan, S., Raschkowski, L., Non-terrestrial networks in 6G. Shaping Future 6G Networks: Needs, Impacts, and Technologies, 2021, Wiley Online Library, 101–116.
Cao, Y., Lien, S.-Y., Liang, Y.-C., Deep reinforcement learning for multi-user access control in non-terrestrial networks. IEEE Trans. Commun. 69:3 (2020), 1605–1619.
Birabwa, D.J., Ramotsoela, D., Ventura, N., Service-aware user association and resource allocation in integrated terrestrial and non-terrestrial networks: A genetic algorithm approach. IEEE Access 10 (2022), 104337–104357.
L. Rosati, G. Reali, Jointly Optimal Routing and Resource Allocation in Hybrid Satellite/Terrestrial Networks, in: 2006 International Workshop on Satellite and Space Communications, 2006, pp. 29–33.
Wang, W., Zhao, S., Zheng, Y., Li, Y., Resource allocation method of cognitive satellite terrestrial networks under non-ideal spectrum sensing. IEEE Access 7 (2019), 7957–7964.
Ji, Z., Wu, S., Jiang, C., Hu, D., Wang, W., Energy-efficient data offloading for multi-cell satellite-terrestrial networks. IEEE Commun. Lett. 24:10 (2020), 2265–2269.
Liu, R., Guo, K., An, K., Huang, Y., Zhou, F., Zhu, S., Resource allocation for cognitive satellite-HAP-terrestrial networks with non-orthogonal multiple access. IEEE Trans. Veh. Technol. 72:7 (2023), 9659–9663.
Shamsabadi, A.A., Yadav, A., Yanikomeroglu, H., Joint beamforming and user association design for integrated HAPS-terrestrial networks. 2023 arXiv preprint arXiv:2307.08202.
V. Milas, P. Constantinou, Simulations of fractional degradation in performance of terrestrial networks due to interference by high-altitude platforms, in: 2006 11th International Workshop on Computer-Aided Modeling, Analysis and Design of Communication Links and Networks, 2006, pp. 78–84.
Ren, Q., Abbasi, O., Kurt, G.K., Yanikomeroglu, H., Chen, J., Handoff-aware distributed computing in high altitude platform station (HAPS)–assisted vehicular networks. IEEE Trans. Wireless Commun., 2023.
Alfattani, S., Yadav, A., Yanikomeroglu, H., Yongaçoglu, A., Resource-efficient HAPS-RIS enabled beyond-cell communications. IEEE Wirel. Commun. Lett. 12:4 (2023), 679–683.
Cumalı, İ., Özbek, B., Kurt, G.K., Yanikomeroglu, H., User selection and codebook design for NOMA-based high altitude platform station (HAPS) communications. IEEE Trans. Veh. Technol. 72:3 (2023), 3636–3646.
Ovatman, T., Kurt, G.K., Yanikomeroglu, H., An accurate model for computation offloading in 6G networks and a HAPS-based case study. IEEE Open J. Commun. Soc. 3 (2022), 1963–1977.
Alidadi Shamsabadi, A., Yadav, A., Abbasi, O., Yanikomeroglu, H., Handling interference in integrated HAPS-terrestrial networks through radio resource management. IEEE Wirel. Commun. Lett. 11:12 (2022), 2585–2589.
Khan, W.U., Lagunas, E., Ali, Z., Javed, M.A., Ahmed, M., Chatzinotas, S., Ottersten, B., Popovski, P., Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces. IEEE Wirel. Commun. 29:6 (2022), 22–28.
Xu, F., Ahmad, S., khan, M.N., Ahmed, M., Raza, S., Khan, F., Ma, Y., Khan, W.U., Beyond encryption: Exploring the potential of physical layer security in UAV networks. J. King Saud Univ. - Comput. Inform. Sci., 35(8), 2023, 101717 URL https://www.sciencedirect.com/science/article/pii/S1319157823002719.
Mahmood, A., Vu, T.X., Chatzinotas, S., Ottersten, B., Joint optimization of 3D placement and radio resource allocation for per-UAV sum rate maximization. IEEE Trans. Veh. Technol., 2023.
Khan, W.U., Javed, M.A., Zeadally, S., Lagunas, E., Chatzinotas, S., Intelligent and secure radio environments for 6G vehicular aided HetNets: Key opportunities and challenges. IEEE Commun. Stand. Mag. 7:3 (2023), 32–39.
Wang, H., Xiao, P., Li, X., Channel parameter estimation of mmwave MIMO system in urban traffic scene: A training channel-based method. IEEE Trans. Intell. Transp. Syst. 25:1 (2024), 754–762.
Khan, W.U., Mahmood, A., Sheemar, C.K., Lagunas, E., Chatzinotas, S., Ottersten, B., Reconfigurable intelligent surfaces for 6G non-terrestrial networks: Assisting connectivity from the sky. IEEE Internet Things Mag. 7:1 (2024), 34–39.
Nauman, A., Alshahrani, H.M., Nemri, N., Othman, K.M., Aljehane, N.O., Maashi, M., Dutta, A.K., Assiri, M., Khan, W.U., Dynamic resource management in integrated NOMA terrestrial–satellite networks using multi-agent reinforcement learning. J. Netw. Comput. Appl., 221, 2024, 103770 URL https://www.sciencedirect.com/science/article/pii/S1084804523001893.
Wang, H., Memon, F.H., Wang, X., Li, X., Zhao, N., Dev, K., Machine learning-enabled MIMO-FBMC communication channel parameter estimation in IIoT: A distributed CS approach. Digit. Commun. Netw. 9:2 (2023), 306–312 URL https://www.sciencedirect.com/science/article/pii/S2352864822002218.
Alsharoa, A., Alouini, M.-S., Improvement of the global connectivity using integrated satellite-airborne-terrestrial networks with resource optimization. IEEE Trans. Wireless Commun. 19:8 (2020), 5088–5100.
Liu, S., Dahrouj, H., Alouini, M.-S., Joint user association and beamforming in integrated satellite-HAPS-ground networks. IEEE Trans. Veh. Technol., 2023.
Ahmed, M., Mirza, M.A., Raza, S., Ahmad, H., Xu, F., Khan, W.U., Lin, Q., Han, Z., Vehicular communication network enabled CAV data offloading: A review. IEEE Trans. Intell. Transp. Syst., 2023.
Sohail, A., Nawaz, N.A., Shah, A.A., Rasheed, S., Ilyas, S., Ehsan, M.K., A systematic literature review on machine learning and deep learning methods for semantic segmentation. IEEE Access, 2022.
Zhang, L., Wang, H., Xue, H., Zhang, H., Liu, Q., Niyato, D., Han, Z., Digital twin-assisted edge computation offloading in industrial Internet of Things with NOMA. IEEE Trans. Veh. Technol., 2023.