[en] Intelligent Reflecting Surfaces (IRS), software-controlled metasurfaces, have emerged as an upcoming sixth-generation (6G) wireless communication technology. IRS intelligently manipulates and optimizes signal propagation using a large-scale array of intelligent elements, enhancing signal coverage, increasing capacity, mitigating path loss, and combating multipath fading This work provides a new energy-efficiency model for multi-IRS-assisted multi-cell non-orthogonal multiple access (NOMA) vehicular to infrastructure communication networks. The objective is the joint optimization of the total power budget at the roadside unit (RSU), NOMA power allocation for the user equipment, and designing phase shifts for IRS in each cell to maximize the achievable energy efficiency of the system. Due to non-convexity, the original non-convex problem is first decoupled and transformed using block coordinate descent and successive convex approximation methods. Then, an efficient solution is achieved using Gradient-based and interior-point methods. We also consider two benchmark schemes: (1) NOMA power optimization at RSU with random phase shift design at IRS and (2) orthogonal multiple access power allocation with optimal phase shift design at IRS. Numerical results show the superiority of the proposed solution compared to the benchmark schemes. The proposed solution outperforms the benchmarks, demonstrating a 59.57% and 151.21% improvement over the NOMA and orthogonal schemes, respectively, at pct=2 dBm. Additionally, it shows up to a 10.43% better performance than OMA at 10 IRS elements.
Disciplines :
Computer science
Author, co-author :
Maashi, Mashael ; Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
Alabdulkreem, Eatedal; Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Negm, Noha; Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Saudi Arabia
Darem, Abdulbasit A.; Department of Computer Science at college of Science, Northern Border University, Arar, Saudi Arabia
Al Duhayyim, Mesfer; Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
Dutta, Ashit Kumar; Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
KHAN, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Nauman, Ali ; School of Computer Science and Engineering Yeungnam University, Gyeongsan, South Korea
External co-authors :
yes
Language :
English
Title :
Energy efficiency optimization for 6G multi-IRS multi-cell NOMA vehicle-to-infrastructure communication networks
Original title :
[en] Energy efficiency optimization for 6G multi-IRS multi-cell NOMA vehicle-to-infrastructure communication networks
Ajou University Deanship of Scientific Research, King Khalid University Deanship of Academic Research, University of Jordan King Khalid University Deanship of Scientific Research, Prince Sattam bin Abdulaziz University Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University King Saud University Deanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University
Funding text :
Acknowledgement: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number ( RGP2/96/44 ). Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R161), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Research Supporting Project number (RSPD2024R787), King Saud University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number ( NBU-FFR-2024-2913-04 ). This study is supported via funding from Prince Sattam bin Abdulaziz University project number ( PSAU/2024/R/1445 ). The authors would like to acknowledge the support provided by AlMaarefa University while conducting this research work.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number (RGP2/86/45). Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R161), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Research Supporting Project number (RSPD2024R787), King Saud University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number (NBU-FFR-2024-2903-05). This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445). This work was also supported by the Researchers Supporting Project Number (MHIRSP-005) Almaarefa University, Riyadh, Saudi Arabia.
Khan, W.U., Ali, Z., Lagunas, E., Mahmood, A., Asif, M., Ihsan, A., Chatzinotas, S., Ottersten, B., Dobre, O.A., Rate splitting multiple access for next generation cognitive radio enabled LEO satellite networks. IEEE Trans. Wireless Commun. 22:11 (2023), 8423–8435.
Ahmed, M., Mirza, M.A., Raza, S., Ahmad, H., Xu, F., Khan, W.U., Lin, Q., Han, Z., Vehicular communication network enabled CAV data offloading: A review. IEEE Trans. Intell. Transp. Syst. 24:8 (2023), 7869–7897.
Wang, H., Xiao, P., Li, X., Channel parameter estimation of mmwave MIMO system in urban traffic scene: A training channel-based method. IEEE Trans. Intell. Transp. Syst. 25:1 (2024), 754–762.
Khan, W.U., Ihsan, A., Nguyen, T.N., Ali, Z., Javed, M.A., NOMA-enabled backscatter communications for green transportation in automotive-industry 5.0. IEEE Trans. Ind. Inform. 18:11 (2022), 7862–7874.
Liu, J., Ahmed, M., Mirza, M.A., Khan, W.U., Xu, D., Li, J., Aziz, A., Han, Z., RL/DRL meets vehicular task offloading using edge and vehicular cloudlet: A survey. IEEE Internet Things J. 9:11 (2022), 8315–8338.
Zeadally, S., Javed, M.A., Hamida, E.B., Vehicular communications for ITS: Standardization and challenges. IEEE Commun. Stand. Mag. 4:1 (2020), 11–17.
Wang, H., Memon, F.H., Wang, X., Li, X., Zhao, N., Dev, K., Machine learning-enabled MIMO-fbmc communication channel parameter estimation in IIoT: A distributed CS approach. Digit. Commun. Netw. 9:2 (2023), 306–312.
Mahmood, A., Ahmed, A., Naeem, M., Hong, Y., Partial offloading in energy harvested mobile edge computing: A direct search approach. IEEE Access 8 (2020), 36757–36763.
Ahmed, M., Raza, S., Mirza, M.A., Aziz, A., Khan, M.A., Khan, W.U., Li, J., Han, Z., A survey on vehicular task offloading: Classification, issues, and challenges. J. King Saud Uni.-Comput. Inform. Sci. 34:7 (2022), 4135–4162.
Wang, H., Xu, L., Yan, Z., Gulliver, T.A., Low-complexity MIMO-FBMC sparse channel parameter estimation for industrial big data communications. IEEE Trans. Ind. Inform. 17:5 (2021), 3422–3430.
Mahmood, A., Hong, Y., Ehsan, M.K., Mumtaz, S., Optimal resource allocation and task segmentation in iot enabled mobile edge cloud. IEEE Trans. Veh. Technol. 70:12 (2021), 13294–13303.
Gyawali, S., Xu, S., Qian, Y., Hu, R.Q., Challenges and solutions for cellular based V2X communications. IEEE Commun. Surv. Tutor. 23:1 (2020), 222–255.
Mahmood, A., Ahmed, A., Naeem, M., Amirzada, M.R., Al-Dweik, A., Weighted utility aware computational overhead minimization of wireless power mobile edge cloud. Comput. Commun. 190 (2022), 178–189.
Jameel, F., Khan, W.U., Kumar, N., Jäntti, R., Efficient power-splitting and resource allocation for cellular V2X communications. IEEE Trans. Intell. Transp. Syst. 22:6 (2020), 3547–3556.
Chavhan, S., Kumar, S., Tiwari, P., Liang, X., Lee, I.H., Muhammad, K., Edge-enabled blockchain-based V2X scheme for secure communication within the smart city development. IEEE Internet Things J., 2023.
Khan, W.U., Javed, M.A., Zeadally, S., Lagunas, E., Chatzinotas, S., Intelligent and secure radio environments for 6G vehicular aided HetNets: Key opportunities and challenges. IEEE Commun. Stand. Mag. 7:3 (2023), 32–39.
Khan, W.U., Lagunas, E., Ali, Z., Javed, M.A., Ahmed, M., Chatzinotas, S., Ottersten, B., Popovski, P., Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces. IEEE Wirel. Commun. 29:6 (2022), 22–28.
Khan, W.U., Mahmood, A., Bozorgchenani, A., Jamshed, M.A., Ranjha, A., Lagunas, E., Pervaiz, H., Chatzinotas, S., Ottersten, B., Popovski, P., Opportunities for intelligent reflecting surfaces in 6G-empowered V2X communications. 2022 arXiv preprint arXiv:2210.00494.
Khan, W.U., Jamshed, M.A., Lagunas, E., Chatzinotas, S., Li, X., Ottersten, B., Energy efficiency optimization for backscatter enhanced noma cooperative V2X communications under imperfect CSI. IEEE Trans. Intell. Transp. Syst. 24:11 (2023), 12961–12972.
Ahmed, M., Shahwar, M., Khan, F., Khan, W.U., Ihsan, A., Khan, U.S., Xu, F., Chatzinotas, S., NOMA-based backscatter communications: Fundamentals, applications, and advancements. IEEE Internet Things J., 2024, 1.
Liu, Y., Zhang, S., Mu, X., Ding, Z., Schober, R., Al-Dhahir, N., Hossain, E., Shen, X., Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE J. Sel. Areas Commun. 40:4 (2022), 1037–1071.
Liu, Y., Mu, X., Liu, X., Di Renzo, M., Ding, Z., Schober, R., Reconfigurable intelligent surface-aided multi-user networks: Interplay between NOMA and RIS. IEEE Wirel. Commun. 29:2 (2022), 169–176.
Khan, W.U., Lagunas, E., Mahmood, A., Ali, Z., Asif, M., Chatzinotas, S., Ottersten, B., Integration of NOMA with reflecting intelligent surfaces: A multi-cell optimization with SIC decoding errors. IEEE Trans. Green Commun. Netw. 7:3 (2023), 1554–1565.
Ahmed, M., Wahid, A., Laique, S.S., Khan, W.U., Ihsan, A., Xu, F., Chatzinotas, S., Han, Z., A survey on STAR-RIS: Use cases, recent advances, and future research challenges. IEEE Internet Things J. 10:16 (2023), 14689–14711.
Shaikh, M.H.N., Rabie, K., Li, X., Tsiftsis, T., Nauryzbayev, G., On the performance of dual RIS-assisted V2I communication under nakagami-m fading. 2022 IEEE 96th Vehicular Technology Conference, VTC2022-Fall, 2022, IEEE, 1–5.
Girdher, A., Bansal, A., Dubey, A., Second-order statistics for IRS-assisted multiuser vehicular network with co-channel interference. IEEE Trans. Intell. Veh. 8:2 (2022), 1800–1812.
Singh, G., Srivastava, A., Bohara, V.A., Visible light and reconfigurable intelligent surfaces for beyond 5g V2X communication networks at road intersections. IEEE Trans. Veh. Technol. 71:8 (2022), 8137–8151.
Agrawal, N., Bansal, A., Singh, K., Li, C.-P., Performance evaluation of RIS-assisted UAV-enabled vehicular communication system with multiple non-identical interferers. IEEE Trans. Intell. Transp. Syst. 23:7 (2021), 9883–9894.
Alsenwi, M., Abolhasan, M., Lipman, J., Intelligent and reliable millimeter wave communications for RIS-aided vehicular networks. IEEE Trans. Intell. Transp. Syst. 23:11 (2022), 21582–21592.
Mizmizi, M., Ayoubi, R.A., Tagliaferri, D., Dong, K., Gentili, G.G., Spagnolini, U., Conformal metasurfaces: A novel solution for vehicular communications. IEEE Trans. Wireless Commun. 22:4 (2022), 2804–2817.
Li, T., Tong, H., Xu, Y., Su, X., Qiao, G., Double IRSs aided massive MIMO channel estimation and spectrum efficiency maximization for high-speed railway communications. IEEE Trans. Veh. Technol. 71:8 (2022), 8630–8645.
Zhu, Y., Mao, B., Kato, N., A dynamic task scheduling strategy for multi-access edge computing in IRS-aided vehicular networks. IEEE Trans. Emerg. Top. Comput. 10:4 (2022), 1761–1771.
Yu, Y., Liu, X., Leung, V.C.M., Fair downlink communications for RIS-UAV enabled mobile vehicles. IEEE Wirel. Commun. Lett. 11:5 (2022), 1042–1046.
Chen, C., Niu, Y., Ai, B., He, R., Han, Z., Zhong, Z., Wang, N., Su, X., Joint design of phase shift and transceiver beamforming for intelligent reflecting surface assisted millimeter-wave high-speed railway communications. IEEE Trans. Veh. Technol. 72:5 (2023), 6253–6267.
Yuan, X., Chen, J., Zhang, N., Ni, J., Yu, F.R., Leung, V.C.M., Digital twin-driven vehicular task offloading and IRS configuration in the internet of vehicles. IEEE Trans. Intell. Transp. Syst. 23:12 (2022), 24290–24304.
Salem, A.A., Rihan, M., Huang, L., Benaya, A., Intelligent reflecting surface assisted hybrid access vehicular communication: NOMA or OMA contributes the most?. IEEE Internet Things J. 9:19 (2022), 18854–18866.
Zheng, X., Cheng, W., Wang, J., Position-aided On/Off states judgment for 1-bit RIS assisted V2V MmWave communication. GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022, IEEE, 3211–3216.
Feng, J., Zhang, P., Huang, L., Qian, G., Reconfigurable intelligent surface aided DFRC vehicular networks. 2023 6th World Conference on Computing and Communication Technologies, WCCCT, 2023, IEEE, 1–6.
Dampahalage, D.L., Manosha, K.S., Rajatheva, N., Latva-Aho, M., Weighted-sum-rate maximization for an reconfigurable intelligent surface aided vehicular network. IEEE Open J. Commun. Soc. 2 (2021), 687–703.
Al-Hilo, A., Samir, M., Elhattab, M., Assi, C., Sharafeddine, S., Reconfigurable intelligent surface enabled vehicular communication: Joint user scheduling and passive beamforming. IEEE Trans. Veh. Technol. 71:3 (2022), 2333–2345.
Pan, Q., Wu, J., Nebhen, J., Bashir, A.K., Su, Y., Li, J., Artificial intelligence-based energy efficient communication system for intelligent reflecting surface-driven vanets. IEEE Trans. Intell. Transp. Syst. 23:10 (2022), 19714–19726.
Khan, W.U., Lagunas, E., Mahmood, A., Chatzinotas, S., Ottersten, B., Energy-efficient RIS-enabled NOMA communication for 6G LEO satellite networks. 2023 IEEE 97th Vehicular Technology Conference, VTC2023-Spring, 2023, 1–6.
Khan, W.U., Lagunas, E., Mahmood, A., Chatzinotas, S., Ottersten, B., RIS-assisted energy-efficient LEO satellite communications with NOMA. IEEE Trans. Green Commun. Netw., 2023, 1.
Mahmood, A., Vu, T.X., Chatzinotas, S., Ottersten, B., Joint optimization of 3D placement and radio resource allocation for per-UAV sum rate maximization. IEEE Trans. Veh. Technol. 72:10 (2023), 13094–13105.
Zheng, B., Wu, Q., Zhang, R., Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?. IEEE Commun. Lett. 24:4 (2020), 753–757.