[en] This survey provides a comprehensive analysis of the integration of Reconfigurable Intelligent Surfaces (RIS) with edge computing, underscoring RIS's critical role in advancing wireless communication networks. The examination begins by demystifying edge computing, contrasting it with traditional cloud computing, and categorizing it into several types. It further delves into advanced edge computing models like Multi-Access Edge Computing (MEC), Vehicle Fog Computing (VFC), and Vehicle Edge Computing (VEC) and challenges. Progressing deeper, the survey explores RIS technology, categorizing it into passive, active, and hybrid RIS, and offers an in-depth analysis of Beyond Diagonal RIS (BD-RIS), including reflective, transmissive, and Simultaneous Transmit and Reflect (STAR) modes. Subsequently, the study assesses RIS's applications within edge computing, revealing its diverse use cases and strategies for performance analysis. The discussion comprises how RIS-driven computation can elevate rates, reduce latency, and contribute to an eco-friendly edge computing approach through better Energy Efficiency (EE). The survey also scrutinizes RIS's role in bolstering security within edge computing. To aid comprehension, each subsection is complemented by summary tables that meticulously elaborate on, compare, and evaluate the literature, focusing on aspects like system models, scenarios, RIS details, Channel State Information (CSI), offloading types, employed schemes, methodologies, and proposed solutions. This organized approach ensures a cohesive and thorough exploration of the survey's diverse topics. By illustrating the synergy between RIS and edge computing, the study provides valuable insights or lessons learned for enhancing wireless networks, paving the way for future breakthroughs in communication technologies. Before conclusion, the survey also identifies ongoing challenges and future research directions in RIS-assisted edge computing, emphasizing the vast potential of this field.
Disciplines :
Computer science
Author, co-author :
Ahmed, Manzoor; School of Computer and Information Science, Hubei Engineering University, Xiaogan City, China ; Institute for AI Industrial Technology Research, Hubei Engineering University, Xiaogan City, China
Raza, Salman; Department of Computer Science, National Textile University Faisalabad, Pakistan
Soofi, Aized Amin; Department of Computer Science, National University of Modern Languages Faisalabad, Pakistan
Khan, Feroz; Balochistan University of Information Technology Engineering & Management Sciences Quetta, Pakistan
KHAN, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Xu, Fang; School of Computer and Information Science, Hubei Engineering University, Xiaogan City, China ; Institute for AI Industrial Technology Research, Hubei Engineering University, Xiaogan City, China
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Fellow, IEEE
Dobre, Octavia A.; Department of Electrical and Computer Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, Canada ; Fellow, IEEE
Han, Zhu; Department of Electrical and Computer Engineering at the University of Houston, Houston, United States ; Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea ; Fellow, IEEE ; Fellow, IEEE
External co-authors :
yes
Language :
English
Title :
A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges
This research was supported by the MOE (Ministry of Education of China) Project of Humanities and Social Sciences (23YJAZH169), the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation (T2020017).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Wang, C.-X., You, X., Gao, X., Zhu, X., Li, Z., Zhang, C., Wang, H., Huang, Y., Chen, Y., Haas, H., et al. On the road to 6G: Visions, requirements, key technologies and testbeds. IEEE Commun. Surv. Tutor. 25:2 (2023), 905–974.
Hong, W., Jiang, Z.H., Yu, C., Hou, D., Wang, H., Guo, C., Hu, Y., Kuai, L., Yu, Y., Jiang, Z., Chen, Z., Chen, J., Yu, Z., Zhai, J., Zhang, N., Tian, L., Wu, F., Yang, G., Hao, Z.-C., Zhou, J.Y., The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE J. Microw. 1:1 (2021), 101–122.
Gustavsson, U., Frenger, P., Fager, C., Eriksson, T., Zirath, H., Dielacher, F., Studer, C., Pärssinen, A., Correia, R., Matos, J.N., et al. Implementation challenges and opportunities in beyond-5G and 6G communication. IEEE J. Microw. 1:1 (2021), 86–100.
Sharma, T., Chehri, A., Fortier, P., Review of optical and wireless backhaul networks and emerging trends of next generation 5G and 6G technologies. Trans. Emerg. Telecommun. Technol. 32:3 (2021), 1–16.
Akyildiz, I.F., Kak, A., Nie, S., 6G and beyond: The future of wireless communications systems. IEEE Access 8 (2020), 133995–134030.
Khan, W.U., Sheemar, C.K., Abdullah, Z., Lagunas, E., Chatzinotas, S., Beyond diagonal IRS assisted ultra massive THz systems: A low resolution approach. 2024 arXiv preprint arXiv:2406.15880.
Khan, W.U., Lagunas, E., Mahmood, A., Ali, Z., Asif, M., Chatzinotas, S., Ottersten, B., Integration of NOMA with reflecting intelligent surfaces: A multi-cell optimization with SIC decoding errors. IEEE Trans. Green Commun. Netw. 7:3 (2023), 1554–1565, 10.1109/TGCN.2023.3263121.
Wang, H., Memon, F.H., Wang, X., Li, X., Zhao, N., Dev, K., Machine learning-enabled MIMO-FBMC communication channel parameter estimation in IIoT: A distributed CS approach. Digit. Commun. Netw. 9:2 (2023), 306–312.
Liu, F., Cui, Y., Masouros, C., Xu, J., Han, T.X., Eldar, Y.C., Buzzi, S., Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 40:6 (2022), 1728–1767, 10.1109/JSAC.2022.3156632.
Wang, H., Xiao, P., Li, X., Channel parameter estimation of mmwave MIMO system in urban traffic scene: A training channel-based method. IEEE Trans. Intell. Transp. Syst. 25:1 (2024), 754–762, 10.1109/TITS.2022.3145363.
Wang, H., Xu, L., Yan, Z., Gulliver, T.A., Low-complexity MIMO-FBMC sparse channel parameter estimation for industrial big data communications. IEEE Trans. Ind. Inform. 17:5 (2021), 3422–3430, 10.1109/TII.2020.2995598.
Vaezi, M., Azari, A., Khosravirad, S.R., Shirvanimoghaddam, M., Azari, M.M., Chasaki, D., Popovski, P., Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Commun. Surv. Tutor. 24:2 (2022), 1117–1174.
Cao, Z., Zhou, X., Wu, X., Zhu, Z., Liu, T., Neng, J., Wen, Y., Data center sustainability: Revisits and outlooks. IEEE Trans. Sustain. Comput., 2023, 1–13.
NVDIA, Z., The world's first AI system built on NVIDIA A100. 2020 https://resources.nvidia.com/en-us-dgx-systems/dgx-ai.
Mwase, C., Jin, Y., Westerlund, T., Tenhunen, H., Zou, Z., Communication-efficient distributed AI strategies for the IoT edge. Future Gener. Comput. Syst. 131 (2022), 292–308.
Wang, Y., Li, C., Liu, C., Liu, S., Lei, Y., Zhang, J., Zhang, Y., Guo, Y., Advancing DSP into HPC, AI, and beyond: challenges, mechanisms, and future directions. CCF Trans. High Perform. Comput. 3 (2021), 114–125.
Bendiab, G., Hameurlaine, A., Germanos, G., Kolokotronis, N., Shiaeles, S., Autonomous vehicles security: Challenges and solutions using blockchain and artificial intelligence. IEEE Trans. Intell. Transp. Syst. 24:4 (2023), 3614–3637.
NVDIA, G., The NVIDIA EGX enterprise platform. 2021 https://www.nvidia.com/en-us/data-center/products/egx/.
Qualcomm, G., Making boundless XR a commercial reality. 2020 https://www.qualcomm.com/news/onq/2020/05/making-boundless-xr-commercial-reality.
Chen, J., Ran, X., Deep learning with edge computing: A review. Proc. IEEE 107:8 (2019), 1655–1674.
Duan, Q., Huang, J., Hu, S., Deng, R., Lu, Z., Yu, S., Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions. IEEE Commun. Surv. Tutor. 25:4 (2023), 2892–2950.
Su, N., Wang, J.-B., Chen, Y., Yu, H., Ding, C., Pan, Y., Wang, J., Joint MU-MIMO precoding and computation optimization for energy efficient industrial IoT with mobile edge computing. IEEE Trans. Green Commun. Netw. 7:3 (2023), 1472–1485.
Pan, C., Ren, H., Wang, K., Kolb, J.F., Elkashlan, M., Chen, M., Di Renzo, M., Hao, Y., Wang, J., Swindlehurst, A.L., et al. Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions. IEEE Commun. Mag. 59:6 (2021), 14–20.
Basharat, S., Hassan, S.A., Pervaiz, H., Mahmood, A., Ding, Z., Gidlund, M., Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks. IEEE Wirel. Commun. 28:6 (2021), 184–191.
Zhu, X., Chen, W., Li, Z., Wu, Q., Zhang, Z., Wang, K., Li, J., RIS-aided spatial scattering modulation for mmWave MIMO transmissions. IEEE Trans. Commun., 2023.
Bie, Q., Liang, Z., Liu, Y., Wu, Q., Zhao, X., Zhang, X.Y., User association for reconfigurable intelligent surfaces aided cell-free networks. IEEE Trans. Veh. Technol. 72:11 (2023), 14456–14467.
Cui, T., Jin, S., Zhang, J., et al. Research report on reconfigurable intelligent surface (RIS). 2021 IMT-2030 (6G) Promotion Group.
Liu, Z., Liu, Y., Chu, X., Reconfigurable intelligent surface-assisted indoor millimeter-wave communications for mobile robots. IEEE Internet Things J., 2023.
Alliance, R.T., Reconfigurable intelligent surface white paper. 2023 http://www.risalliance.com/en/riswp2023.html.
Khalid, W., Rehman, M.A.U., Van Chien, T., Kaleem, Z., Lee, H., Yu, H., Reconfigurable intelligent surface for physical layer security in 6G-IoT: designs, issues, and advances. IEEE Internet Things J., 2023.
Liang, Y.-C., Long, R., Zhang, Q., Chen, J., Cheng, H.V., Guo, H., Large intelligent surface/antennas (LISA): Making reflective radios smart. J. Commun. Inf. Netw. 4:2 (2019), 40–50.
Di Renzo, M., Zappone, A., Debbah, M., Alouini, M.-S., Yuen, C., De Rosny, J., Tretyakov, S., Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 38:11 (2020), 2450–2525.
Liang, Y.-C., Chen, J., Long, R., He, Z.-Q., Lin, X., Huang, C., Liu, S., Shen, X.S., Di Renzo, M., Reconfigurable intelligent surfaces for smart wireless environments: channel estimation, system design and applications in 6G networks. Sci. China Inf. Sci. 64 (2021), 1–21.
Sharma, T., Chehri, A., Fortier, P., Reconfigurable intelligent surfaces for 5G and beyond wireless communications: A comprehensive survey. Energies, 14(24), 2021, 8219.
Zhang, H., Di, B., Bian, K., Han, Z., Poor, H.V., Song, L., Toward ubiquitous sensing and localization with reconfigurable intelligent surfaces. Proc. IEEE 110:9 (2022), 1401–1422, 10.1109/JPROC.2022.3169771.
Puspitasari, A.A., Lee, B.M., A survey on reinforcement learning for reconfigurable intelligent surfaces in wireless communications. Sensors, 23(5), 2023, 2554.
Liu, Y., Liu, X., Mu, X., Hou, T., Xu, J., Di Renzo, M., Al-Dhahir, N., Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 23:3 (2021), 1546–1577.
Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Niyato, D., Dobre, O., Poor, H.V., 6G internet of things: A comprehensive survey. IEEE Internet Things J. 9:1 (2021), 359–383.
Pogaku, A.C., Do, D.-T., Lee, B.M., Nguyen, N.D., UAV-assisted RIS for future wireless communications: A survey on optimization and performance analysis. IEEE Access 10 (2022), 16320–16336.
Ahmed, M., Wahid, A., Laique, S.S., Khan, W.U., Ihsan, A., Xu, F., Chatzinotas, S., Han, Z., A survey on STAR-RIS: Use cases, recent advances, and future research challenges. IEEE Internet Things J. 10:16 (2023), 14689–14711.
Renzo, M.D., Debbah, M., Phan-Huy, D.-T., Zappone, A., Alouini, M.-S., Yuen, C., Sciancalepore, V., Alexandropoulos, G.C., Hoydis, J., Gacanin, H., et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wireless Commun. Networking 2019:1 (2019), 1–20.
Kisseleff, S., Martins, W.A., Al-Hraishawi, H., Chatzinotas, S., Ottersten, B., Reconfigurable intelligent surfaces for smart cities: Research challenges and opportunities. IEEE Open J. Commun. Soc. 1 (2020), 1781–1797, 10.1109/OJCOMS.2020.3036839.
Gong, S., Lu, X., Hoang, D.T., Niyato, D., Shu, L., Kim, D.I., Liang, Y.-C., Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Commun. Surv. Tutor. 22:4 (2020), 2283–2314.
Almohamad, A., Tahir, A.M., Al-Kababji, A., Furqan, H.M., Khattab, T., Hasna, M.O., Arslan, H., Smart and secure wireless communications via reflecting intelligent surfaces: A short survey. IEEE Open J. Commun. Soc. 1 (2020), 1442–1456.
Long, W., Chen, R., Moretti, M., Zhang, W., Li, J., A promising technology for 6G wireless networks: Intelligent reflecting surface. J. Commun. Inf. Netw. 6:1 (2021), 1–16.
Björnson, E., Wymeersch, H., Matthiesen, B., Popovski, P., Sanguinetti, L., de Carvalho, E., Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications. IEEE Signal Process. Mag. 39:2 (2022), 135–158.
Dinh, H.T., Lee, C., Niyato, D., Wang, P., A survey of mobile cloud computing: architecture, applications, and approaches. Wireless Commun. Mob. Comput. 13:18 (2013), 1587–1611.
Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N., The case for vm-based cloudlets in mobile computing. IEEE Perv. Comput. 8:4 (2009), 14–23.
F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things, in: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 13–16.
S. Yi, C. Li, Q. Li, A survey of fog computing: concepts, applications and issues, in: Proceedings of the 2015 Workshop on Mobile Big Data, 2015, pp. 37–42.
Mao, Y., You, C., Zhang, J., Letaief, K.B., Huang, K., A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 19:4 (2017), 2322–2358.
Liu, C.H., Chen, M., Pei, Q., Hu, L., Wang, J., Edge computing for autonomous driving: Opportunities and challenges. Proc. IEEE 107:8 (2019), 1697–1716.
Soofi, A.A., Tahir, M., Raza, N., Securing the internet of things: A comprehensive review of security challenges and artificial intelligence solutions. Found. Univ. J. Eng. Appl. Sci. 4:2 (2024), 1–20 (HEC Recognized Y Category, ISSN 2706-7351).
Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., Edge computing: Vision and challenges. IEEE Internet Things J. 3:5 (2016), 637–646.
Yin, L., Sun, J., Zhou, J., Gu, Z., Li, K., ECFA: an efficient convergent firefly algorithm for solving task scheduling problems in cloud-edge computing. IEEE Trans. Serv. Comput., 2023.
Żyliński, M., Nassibi, A., Rakhmatulin, I., Malik, A., Papavassiliou, C., Mandic, D.P., Deployment of artificial intelligence models on edge devices: A tutorial brief. IEEE Trans. Circuits Syst. II, 2023, 10.1109/TCSII.2023.3336831 1–1.
Mach, P., Becvar, Z., Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19:3 (2017), 1628–1656, 10.1109/COMST.2017.2682318.
Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., Edge computing: Vision and challenges. IEEE Internet Things J. 3:5 (2016), 637–646, 10.1109/JIOT.2016.2579198.
Yang, S., Tan, J., Lei, T., Linares-Barranco, B., Smart traffic navigation system for fault-tolerant edge computing of internet of vehicle in intelligent transportation gateway. IEEE Trans. Intell. Transp. Syst. 24:11 (2023), 13011–13022.
Mahmood, A., Vu, T.X., Khan, W.U., Chatzinotas, S., Ottersten, B., Optimizing computational and communication resources for MEC network empowered UAV-ris communication. 2022 IEEE Globecom Workshops, GC Wkshps, 2022, IEEE, 974–979.
Mahmood, A., Vu, T.X., Khan, W.U., Chatzinotas, S., Ottersten, B., Joint computation and communication resource optimization for beyond diagonal UAV-IRS empowered MEC networks. 2023 arXiv preprint arXiv:2311.07199.
Nauman, A., Khan, W.U., Aldehim, G., Alqahtani, H., Alruwais, N., Al Duhayyim, M., Dev, K., Min, H., Nkenyereye, L., Communication and computational resource optimization for industry 5.0 smart devices empowered by MEC. J. King Saud Univ. Comput. Inf. Sci., 36(1), 2024, 101870.
Satyanarayanan, M., The emergence of edge computing. Computer 50:1 (2017), 30–39.
Mirza, M.A., Yu, J., Ahmed, M., Raza, S., Khan, W.U., Xu, F., Nauman, A., DRL-driven zero-RIS assisted energy-efficient task offloading in vehicular edge computing networks. J. King Saud Univ. Comput. Inf. Sci., 35(10), 2023, 101837.
Wen, D., Liu, P., Zhu, G., Shi, Y., Xu, J., Eldar, Y.C., Cui, S., Task-oriented sensing, computation, and communication integration for multi-device edge AI. IEEE Trans. Wireless Commun., 2023.
Xiao, Y., Xia, R., Li, Y., Shi, G., Nguyen, D.N., Hoang, D.T., Niyato, D., Krunz, M., Distributed traffic synthesis and classification in edge networks: A federated self-supervised learning approach. IEEE Trans. Mob. Comput., 2023, 1–15.
Sun, H., Chen, Y., Sha, K., Huang, S., Wang, X., Shi, W., A proactive on-demand content placement strategy in edge intelligent gateways. IEEE Trans. Parallel Distrib. Syst. 34:7 (2023), 2072–2090.
Firouzi, F., Daneshmand, M., Song, J., Mankodiya, K., Guest editorial special issue on empowering the future generation systems: Opportunities by the convergence of cloud, edge, AI, and IoT. IEEE Internet Things J. 10:5 (2023), 3681–3685.
Zhou, W., Xia, J., Zhou, F., Fan, L., Lei, X., Nallanathan, A., Karagiannidis, G.K., Profit maximization for cache-enabled vehicular mobile edge computing networks. IEEE Trans. Veh. Technol. 72:10 (2023), 13793–13798.
Tang, J., Jalalzai, M.M., Feng, C., Xiong, Z., Zhang, Y., Latency-aware task scheduling in software-defined edge and cloud computing with erasure-coded storage systems. IEEE Trans. Cloud Comput. 11:2 (2022), 1575–1590.
Zhang, Y., Chen, C., Liu, L., Lan, D., Jiang, H., Wan, S., Aerial edge computing on orbit: A task offloading and allocation scheme. IEEE Trans. Netw. Sci. Eng. 10:1 (2022), 275–285.
Liu, D., Zhang, Y., Jia, D., Zhang, Q., Zhao, X., Rong, H., Toward secure distributed data storage with error locating in blockchain enabled edge computing. Comput. Stand. Interfaces, 79, 2022, 103560.
Kandi, P., Tarapatla, S.R., Kumar, S., Kadiyam, H., Chowdary, D., Moparthi, N.R., A review: Data security in cloud computing using machine learning. 5th International Conference on Contemporary Computing and Informatics, IC3I, 2022, IEEE, 1447–1451.
Chi, H.R., de Fátima Domingues, M., Zhu, H., Li, C., Kojima, K., Radwan, A., Healthcare 5.0: In the perspective of consumer internet-of-things-based fog/cloud computing. IEEE Trans. Consum. Electron., 2023 1–1.
Gao, H., Huang, W., Liu, T., Yin, Y., Li, Y., PPO2: Location privacy-oriented task offloading to edge computing using reinforcement learning for intelligent autonomous transport systems. IEEE Trans. Intell. Transp. Syst. 24:7 (2022), 7599–7612.
Hartmann, M., Hashmi, U.S., Imran, A., Edge computing in smart health care systems: Review, challenges, and research directions. Trans. Emerg. Telecommun. Technol., 33(3), 2022, e3710.
Rahmani, M.K.I., Shuaib, M., Alam, S., Siddiqui, S.T., Ahmad, S., Bhatia, S., Mashat, A., Blockchain-based trust management framework for cloud computing-based internet of medical things (IoMT): a systematic review. Comput. Intell. Neurosci. 2022 (2022), 1–14.
Zhou, H., Wang, Z., Zheng, H., He, S., Dong, M., Cost minimization-oriented computation offloading and service caching in mobile cloud-edge computing: An A3C-based approach. IEEE Trans. Netw. Sci. Eng. 10:3 (2023), 1326–1338.
Vinoth, R., Deborah, L.J., Vijayakumar, P., Gupta, B.B., An anonymous pre-authentication and post-authentication scheme assisted by cloud for medical IoT environments. IEEE Trans. Netw. Sci. Eng. 9:5 (2022), 3633–3642.
Wang, H., Jiang, J., Li, J., Ahmed, M., Peng, M., High energy efficient heterogeneous networks: cooperative and cognitive techniques. Int. J. Antennas Propag. 2013 (2013), 1–7.
Li, Y., Wang, F., Zhang, X., Guo, S., IRS-based MEC for delay-constrained QoS over RF-powered 6G mobile wireless networks. IEEE Trans. Veh. Technol. 72:7 (2023), 8722–8737.
ETSI GS MEC 001:, Y., Mobile Edge Computing (MEC); Terminology V1.1.1. 2016.
ETSI GS MEC 003:, Y., Mobile edge computing (MEC); framework and reference architecture V1.1.1. 2016.
ETSI GS MEC 004:, Y., Mobile edge computing (MEC); service scenarios V1.1.1. 2016.
ETSI GS MEC 005:, Y., Mobile edge computing (MEC); proof of concept framework V1.1.1. 2016.
Wang, H., Xie, J., Muslam, M.M.A., FAIR: Towards impartial resource allocation for intelligent vehicles with automotive edge computing. IEEE Trans. Intell. Veh. 8:2 (2023), 1971–1982.
Ahmed, M., Mirza, M.A., Raza, S., Ahmad, H., Xu, F., Khan, W.U., Lin, Q., Han, Z., Vehicular communication network enabled CAV data offloading: A review. IEEE Trans. Intell. Transp. Syst. 24:8 (2023), 7869–7897.
Ahmed, M., Alshahrani, H.M., Alruwais, N., Asiri, M.M., Al Duhayyim, M., Khan, W.U., Nauman, A., et al. Joint optimization of UAV-irs placement and resource allocation for wireless powered mobile edge computing networks. J. King Saud Univ. Comput. Inf. Sci., 35(8), 2023, 101646.
Mahmud, R., Pallewatta, S., Goudarzi, M., Buyya, R., Ifogsim2: An extended ifogsim simulator for mobility, clustering, and microservice management in edge and fog computing environments. J. Syst. Softw., 190, 2022, 111351.
Aljubayrin, S., Aldehim, G., Alruwais, N., Mahmood, K., Al Duhayyim, M., Min, H., Nkenyereye, L., Khan, W.U., Dynamic offloading strategy for computational energy efficiency of wireless power transfer based MEC networks in industry 5.0. J. King Saud Univ. Comput. Inf. Sci., 35(10), 2023, 101841.
Nauman, A., Alruwais, N., Alabdulkreem, E., Nemri, N., Aljehane, N.O., Dutta, A.K., Assiri, M., Khan, W.U., Empowering smart cities: High-altitude platforms based mobile edge computing and wireless power transfer for efficient IoT data processing. Internet Things, 24, 2023, 100986.
Raza, S., Wang, S., Ahmed, M., Anwar, M., A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions. Wirel. Commun. Mob. Comput. 2019 (2019), 1–19.
Fan, W., Su, Y., Liu, J., Li, S., Huang, W., Wu, F., Liu, Y., Joint task offloading and resource allocation for vehicular edge computing based on V2i and V2V modes. IEEE Trans. Intell. Transp. Syst. 24:4 (2023), 4277–4292.
Mirza, A., Muhammad, Y., Junsheng, R., Salman, K., Moez, A., Manzoor, K., Ullah, W., Rabie, K., DRL-assisted delay optimized task offloading in automotive-industry 5.0 based VECNs. J. King Saud Univ. Comput. Inf. Sci., 35, 2023, 101512.
Ahmed, M., Raza, S., Mirza, M.A., Aziz, A., Khan, M.A., Khan, W.U., Li, J., Han, Z., A survey on vehicular task offloading: classification, issues, and challenges. J. King Saud Univ. Comput. Inf. Sci., 2022.
Raza, S., Ahmed, M., Ahmad, H., Mirza, M.A., Habib, M.A., Wang, S., Task offloading in mmwave based 5G vehicular cloud computing. J. Ambient Intell. Humaniz. Comput., 2022 1–1.
Raza, S., Liu, W., Ahmed, M., Anwar, M.R., Mirza, M.A., Sun, Q., Wang, S., An efficient task offloading scheme in vehicular edge computing. J. Cloud Comput. 9:1 (2020), 1–14.
Mirza, M.A., Junsheng, Y., Raza, S., Ahmed, M., Asif, M., Irshad, A., Kumar, N., MCLA task offloading framework for 5G-NR-V2X-based heterogeneous VECNs. IEEE Trans. Intell. Transp. Syst., 2023.
Peng, Y., Tang, X., Zhou, Y., Li, J., Qi, Y., Liu, L., Lin, H., Computing and communication cost-aware service migration enabled by transfer reinforcement learning for dynamic vehicular edge computing networks. IEEE Trans. Mob. Comput. 23:1 (2024), 257–269, 10.1109/TMC.2022.3225239.
Laboni, N.M., Safa, S.J., Sharmin, S., Razzaque, M.A., Rahman, M.M., Hassan, M.M., A hyper heuristic algorithm for efficient resource allocation in 5g mobile edge clouds. IEEE Trans. Mob. Comput. 23:1 (2024), 29–41, 10.1109/TMC.2022.3213410.
Fan, W., Zhao, L., Liu, X., Su, Y., Li, S., Wu, F., Liu, Y., Collaborative service placement, task scheduling, and resource allocation for task offloading with edge-cloud cooperation. IEEE Trans. Mob. Comput. 23:1 (2024), 238–256, 10.1109/TMC.2022.3219261.
Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W., A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4:5 (2017), 1125–1142, 10.1109/JIOT.2017.2683200.
Chikha, W.B., Masson, M., Altman, Z., Jemaa, S.B., Radio environment map based inter-cell interference coordination for massive-MIMO systems. IEEE Trans. Mob. Comput. 23:1 (2024), 785–796, 10.1109/TMC.2022.3222763.
Chen, S., Xu, Y., Xu, H., Jiang, Z., Qiao, C., Decentralized federated learning with intermediate results in mobile edge computing. IEEE Trans. Mob. Comput. 23:1 (2024), 341–358, 10.1109/TMC.2022.3221212.
Duan, Q., Huang, J., Hu, S., Deng, R., Lu, Z., Yu, S., Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions. IEEE Commun. Surv. Tutor. 25:4 (2023), 2892–2950, 10.1109/COMST.2023.3316615.
Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B., A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 19:4 (2017), 2322–2358, 10.1109/COMST.2017.2745201.
Shi, T., Cai, Z., Li, J., Gao, H., Qiu, T., Qu, W., An efficient processing scheme for concurrent applications in the IoT edge. IEEE Trans. Mob. Comput. 23:1 (2024), 135–149, 10.1109/TMC.2022.3219983.
Huang, J., Wang, C.-X., Sun, Y., Feng, R., Huang, J., Guo, B., Zhong, Z., Cui, T.J., Reconfigurable intelligent surfaces: Channel characterization and modeling. Proc. IEEE 110:9 (2022), 1290–1311.
Rasilainen, K., Phan, T.D., Berg, M., Pärssinen, A., Soh, P.J., Hardware aspects of sub-THz antennas and reconfigurable intelligent surfaces for 6G applications. IEEE J. Sel. Areas Commun. 41:8 (2023), 2530–2546.
Pendry, J.B., Negative refraction makes a perfect lens. Phys. Rev. Lett., 85(18), 2000, 3966.
Smith, D.R., Pendry, J.B., Wiltshire, M., Metamaterials and negative refractive index. Science 305:5685 (2004), 788–792.
Sievenpiper, D., Zhang, L., Broas, R.F., Alexopolous, N.G., Yablonovitch, E., High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47:11 (1999), 2059–2074.
Liaskos, C., Nie, S., Tsioliaridou, A., Pitsillides, A., Ioannidis, S., Akyildiz, I.F., A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56:9 (2018), 162–169.
Subrt, L., Pechac, P., Controlling propagation environments using intelligent walls. Proceedings of the 2012 6th European Conference on Antennas and Propagation, EUCAP, 2012, IEEE, 1–5.
Wu, Q., Zhang, R., Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wireless Commun. 18:11 (2019), 5394–5409.
Di Renzo, M., Debbah, M., Phan-Huy, D.-T., Zappone, A., Alouini, M.-S., Yuen, C., Sciancalepore, V., Alexandropoulos, G.C., Hoydis, J., Gacanin, H., Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wireless Commun. Networking, 2019(1), 2019, 129.
Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M.-S., Zhang, R., Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7 (2019), 116753–116773.
NTT, M.A., NTT and NTT DOCOMO trial first use of user-tracking metasurface reflector for extreme mobile coverage in current 5G and coming 6G era. 2021 https://group.ntt/en/newsrelease/2021/11/12/211112b.html.
Liu, R., Wu, Q., Di Renzo, M., Yuan, Y., A path to smart radio environments: An industrial viewpoint on reconfigurable intelligent surfaces. IEEE Wirel. Commun. 29:1 (2022), 202–209.
Tang, W., et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation. IEEE J. Sel. Areas Commun. 38:11 (2020), 2683–2699.
Pei, X., Yin, H., Tan, L., Cao, L., Li, Z., Wang, K., Zhang, K., Björnson, E., RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Field Trials. IEEE Trans. Commun., 2021 Prototypes with 1,100 tunable elements.
Society, I.C., Special interest groups and emerging technology initiatives on RIS within IEEE ComSoc. 2020 Standardization efforts within IEEE.
Association, C.C.S., Meeting detail of TC5 WG6 meeting 55. 2020 CCSA's standardization activities on RIS.
Institute, E.T.S., ETSI industry specification group on reconfigurable intelligent surfaces. 2021 Standardization group established in June 2021.
Union, I.T., ITU-R WP 5D meeting. 2020 Meeting discussing RIS as a key technology for future wireless networks.
Di Renzo, M., et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 38:11 (2020), 2450–2525.
Authors, V., VisorSurf - a hardware platform for software-driven functional metasurfaces. Horizon 2020, 2020 Funded project.
Bazrafkan, A., Poposka, M., Hadzi-Velkov, Z., Popovski, P., Zlatanov, N., Performance comparison between a simple full-duplex multi-antenna relay and a passive reflecting intelligent surface. IEEE Trans. Wireless Commun. 22:8 (2023), 5461–5472.
Zhou, G., Pan, C., Ren, H., Xu, D., Zhang, Z., Wang, J., Schober, R., A framework for transmission design for active RIS-aided communication with partial CSI. IEEE Trans. Wireless Commun., 2023 1–1.
Ahmed, M., Raza, S., Soofi, A.A., Khan, F., Khan, W.U., Abideen, S.Z.U., Xu, F., Han, Z., Active reconfigurable intelligent surfaces: Expanding the frontiers of wireless communication-a survey. IEEE Commun. Surv. Tutor., 2024.
Singh, S.K., Agrawal, K., Singh, K., Clerckx, B., Li, C.-P., RSMA for hybrid RIS-UAV-aided full-duplex communications with finite blocklength codes under imperfect SIC. IEEE Trans. Wireless Commun. 22:9 (2023), 5957–5975.
Nerini, M., Shen, S., Clerckx, B., Closed-form global optimization of beyond diagonal reconfigurable intelligent surfaces. IEEE Trans. Wireless Commun., 2023 1–1.
Khan, W.U., Lagunas, E., Mahmood, A., Chatzinotas, S., Ottersten, B., RIS-assisted energy-efficient LEO satellite communications with NOMA. IEEE Trans. Green Commun. Netw. 8:2 (2024), 780–790, 10.1109/TGCN.2023.3344102.
Santamaria, I., Soleymani, M., Jorswieck, E., Gutiérrez, J., SNR maximization in beyond diagonal RIS-assisted single and multiple antenna links. IEEE Signal Process. Lett. 30 (2023), 923–926.
Li, H., Shen, S., Clerckx, B., Beyond diagonal reconfigurable intelligent surfaces: A multi-sector mode enabling highly directional full-space wireless coverage. IEEE J. Sel. Areas Commun. 41:8 (2023), 2446–2460.
Asif, M., Ihsan, A., Khan, W.U., Ali, Z., Zhang, S., Wu, S.X., Energy-efficient beamforming and resource optimization for STAR-IRS enabled hybrid-NOMA 6G communications. IEEE Trans. Green Commun. Netw. 7:3 (2023), 1356–1368, 10.1109/TGCN.2023.3281414.
Nerini, M., Shen, S., Clerckx, B., Discrete-value group and fully connected architectures for beyond diagonal reconfigurable intelligent surfaces. IEEE Trans. Veh. Technol., 2023, 1–15.
Li, H., Shen, S., Clerckx, B., A dynamic grouping strategy for beyond diagonal reconfigurable intelligent surfaces with hybrid transmitting and reflecting mode. IEEE Trans. Veh. Technol., 2023, 1–6.
Li, H., Shen, S., Clerckx, B., Beyond diagonal reconfigurable intelligent surfaces: From transmitting and reflecting modes to single-, group-, and fully-connected architectures. IEEE Trans. Wireless Commun. 22:4 (2022), 2311–2324.
Mishra, A., Mao, Y., D'Andrea, C., Buzzi, S., Clerckx, B., Transmitter side beyond-diagonal reconfigurable intelligent surface for massive MIMO networks. IEEE Wireless Commun. Lett., 2023 1–1.
ZTE, A., AIS and ZTE announce world's first dynamic RIS trial in mmWave network. 2023 https://zte.com.cn/global/about/news/ais-and-zte-announce-world-s-first-dynamic-ris-trial-in-mmwave-network.html.
HuaweiTech, A., Terahertz sensing and communication towards future intelligence connected networks. 2022 https://www.huawei.com/en/huaweitech/future-technologies/terahertz-sensing-communication.
Jiang, T., Han, Y., Zhao, L., Yang, K., Channel estimation for RIS-empowered multi-input single-output communication systems. IEEE Access 9 (2021), 35235–35245.
Wu, L., Lou, K., Ke, J., Liang, J., Luo, Z., Dai, J.Y., Cheng, Q., Cui, T.J., A wideband amplifying reconfigurable intelligent surface. IEEE Trans. Antennas and Propagation 70:11 (2022), 10623–10631.
Araghi, A., Khalily, M., Safaei, M., Bagheri, A., Singh, V., Wang, F., Tafazolli, R., Reconfigurable intelligent surface (RIS) in the sub-6 GHz band: Design, implementation, and real-world demonstration. IEEE Access 10 (2022), 2646–2655.
Yang, S., Han, H., Liu, Y., Guo, W., Pang, Z., Zhang, L., Reconfigurable intelligent surface-induced randomness for mmwave key generation. ICC 2023-IEEE International Conference on Communications, 2023, IEEE, Rome, Italy, 2909–2914.
Tang, S., Zhang, Y., Xie, Z., Chen, X., Wireless communications with reconfigurable intelligent surfaces: Path loss modeling and measurements. IEEE Trans. Wireless Commun. 20:2 (2020), 732–746.
He, S., Zhang, S., Zhang, R., Adaptive beamforming design for RIS-aided MIMO system. IEEE Trans. Veh. Technol. 69:10 (2020), 10651–10655.
Yang, L., Yang, K., Chen, Y., Zhao, L., MIMO transmission for reconfigurable intelligent surface communications: Protocol design, analysis, and optimization. IEEE J. Sel. Areas Commun. 38:11 (2020), 2538–2549.
Xu, J., Xu, A., Chen, L., Chen, Y., Liang, X., Ai, B., Deep reinforcement learning for RIS-aided secure mobile edge computing in industrial internet of things. IEEE Trans. Ind. Inform., 2023, 1–10.
Zeng, H., Influences of mobile edge computing-based service preloading on the early-warning of financial risks. J. Supercomput. 78:9 (2022), 11621–11639.
Zheng, S., Lv, B., Zhang, T., Xu, Y., Chen, G., Wang, R., Ching, P., On DoF of active RIS-assisted MIMO interference channel with arbitrary antenna configurations: When will RIS help?. IEEE Trans. Veh. Technol., 2023, 1–6.
Savkin, A.V., Huang, C., Ni, W., Joint multi-UAV path planning and LoS communication for mobile-edge computing in IoT networks with RISs. IEEE Internet Things J. 10:3 (2022), 2720–2727.
Wang, C., Yuan, Z., Zhou, P., Xu, Z., Li, R., Wu, D.O., The security and privacy of mobile edge computing: An artificial intelligence perspective. IEEE Internet Things J. 10 (2023), 8705–8719.
P. de Figueiredo, F.A., Unlocking the power of reconfigurable intelligent surfaces: From wireless communication to energy efficiency and beyond. Appl. Sci., 13(21), 2023, 11750.
Di Renzo, M., Zappone, A., Debbah, M., Alouini, M.S., Yuen, C., de Rosny, J., Tretyakov, S., Reconfigurable intelligent surfaces vs. Relaying: Differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 1 (2020), 798–807, 10.1109/OJCOMS.2020.3010293.
Huang, C., Zappone, A., Alexandropoulos, G.C., Debbah, M., Yuen, C., Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun. 18:8 (2019), 4157–4170, 10.1109/TWC.2019.2922609.
Wu, Q., Zhang, R., Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58:1 (2020), 106–112, 10.1109/MCOM.001.1900107.
Han, Y., Tang, W., Jin, S., Wen, C., Ma, X., Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans. Veh. Technol. 68:8 (2019), 8238–8242, 10.1109/TVT.2019.2925085.
Basar, E., Di Renzo, M., Rosny, J.D., Debbah, M., Alouini, M.S., Zhang, R., Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7 (2019), 116753–116773, 10.1109/ACCESS.2019.2935192.
Chu, Z., Hao, W., Xiao, P., Shi, J., Intelligent reflecting surface aided mobile edge computing for IoT networks: Cooperative partial computation offloading. IEEE Internet Things J. 8:4 (2021), 2946–2958, 10.1109/JIOT.2020.3014741.
Gong, S., Lu, X., Hoang, D.T., Niyato, D., Shu, L., Kim, D.I., Liang, Y., Towards smart radio environment for wireless communications via intelligent reflecting surfaces: A comprehensive survey. IEEE Commun. Surv. Tutor. 22:4 (2020), 2283–2314, 10.1109/COMST.2020.3004197.
Xu, M., Niyato, D., Edge computing technologies for metaverse. Metaverse Communication and Computing Networks: Applications, Technologies, and Approaches, 2024, 183–204, 10.1002/9781394160013.ch8.
Raza, S., Wang, S., Ahmed, M., Anwar, M.R., Mirza, M.A., Khan, W.U., Task offloading and resource allocation for IoV using 5G NR-V2X communication. IEEE Internet Things J. 9:13 (2021), 10397–10410.
Chen, Q., Guo, S., Wang, K., Xu, W., Li, J., Cai, Z., Gao, H., Zomaya, A., Towards real-time inference offloading with distributed edge computing: the framework and algorithms. IEEE Trans. Mob. Comput., 2023, 1–18, 10.1109/TMC.2023.3335051.
Chu, Z., Xiao, P., Shojafar, M., Mi, D., Mao, J., Hao, W., Intelligent reflecting surface assisted mobile edge computing for internet of things. IEEE Wireless Commun. Lett. 10:3 (2020), 619–623.
Cao, X., Yang, B., Huang, C., Yuen, C., Zhang, Y., Niyato, D., Han, Z., Converged reconfigurable intelligent surface and mobile edge computing for space information networks. IEEE Netw. 35:4 (2021), 42–48.
Bai, T., Pan, C., Ren, H., Deng, Y., Elkashlan, M., Nallanathan, A., Resource allocation for intelligent reflecting surface aided wireless powered mobile edge computing in OFDM systems. IEEE Trans. Wireless Commun. 20:8 (2021), 5389–5407.
Mao, S., Zhang, N., Liu, L., Wu, J., Dong, M., Ota, K., Liu, T., Wu, D., Computation rate maximization for intelligent reflecting surface enhanced wireless powered mobile edge computing networks. IEEE Trans. Veh. Technol. 70:10 (2021), 10820–10831.
Chen, P., Lyu, B., Yang, Z., Intelligent reflecting surface enhanced wireless powered mobile edge computing. IEEE/CIC International Conference on Communications in China, ICCC, 2021, IEEE, Xiamen, 1101–1106.
Liu, Z., Li, Z., Wen, M., Gong, Y., Wu, Y.-C., Simultaneously transmitting and reflecting RIS-aided mobile edge computing: Computation rate maximization. 2022 arXiv preprint arXiv:2212.00697.
Chu, Z., Xiao, P., Shojafar, M., Mi, D., Hao, W., Shi, J., Zhou, F., Utility maximization for IRS assisted wireless powered mobile edge computing and caching (WP-MECC) networks. IEEE Trans. Commun. 71:1 (2022), 457–472.
Chen, P., Lyu, B., Liu, Y., Guo, H., Yang, Z., Multi-IRS assisted wireless-powered mobile edge computing for internet of things. IEEE Trans. Green Commun. Netw. 7:1 (2022), 130–144.
Yu, C., Li, Y., Xie, W., Zhu, P., Peng, X., Computation rate optimization for double-intelligent reflecting surface aided mobile edge computing system. IET Commun. 17:7 (2023), 790–796.
Liu, Z., Li, Z., Wen, M., Gong, Y., Wu, Y.-C., STAR-RIS-aided mobile edge computing: Computation rate maximization with binary amplitude coefficients. IEEE Trans. Commun., 2023.
Hu, H., Sheng, Z., Nasir, A.A., Yu, H., Fang, Y., Computation capacity maximization for UAV and RIS cooperative MEC system with NOMA. IEEE Commun. Lett. 28:3 (2024), 592–596.
Zhou, F., You, C., Zhang, R., Delay-optimal scheduling for IRS-aided mobile edge computing. IEEE Wireless Commun. Lett. 10:4 (2020), 740–744.
Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A., Hanzo, L., Latency minimization for intelligent reflecting surface aided mobile edge computing. IEEE J. Sel. Areas Commun. 38:11 (2020), 2666–2682.
Jaffry, S., Intelligent reflecting surface aided wireless energy transfer and mobile edge computing for public transport vehicles. 2021 arXiv preprint arXiv:2102.08672.
El Haber, E., Elhattab, M., Assi, C., Sharafeddine, S., Nguyen, K.K., Latency and reliability aware edge computation offloading via an intelligent reflecting surface. IEEE Commun. Lett. 25:12 (2021), 3947–3951.
Di Lorenzo, P., Merluzzi, M., Strinati, E.C., Dynamic mobile edge computing empowered by reconfigurable intelligent surfaces. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2021, IEEE, 526–530.
Wang, Z., Wei, Y., Feng, Z., Yu, F.R., Han, Z., Resource management and reflection optimization for intelligent reflecting surface assisted multi-access edge computing using deep reinforcement learning. IEEE Trans. Wireless Commun. 22:2 (2022), 1175–1186.
Li, R., Hao, W., Wang, F., Yang, S., Min-max latency optimization for intelligent reflecting surface-assisted mobile edge computing. 2022 IEEE 22nd International Conference on Communication Technology, ICCT, 2022, IEEE, Nanjing, China, 662–666.
Sarfraz, M., Alshahrani, H.M., Tarmissi, K., Alshahrani, H., Elfaki, M.A., Hamza, M.A., Nauman, A., Khurshaid, T., Intelligent reflecting surfaces enhanced mobile edge computing: Minimizing the maximum computational time. Sensors, 22(22), 2022, 8719.
Zheng, W., Yan, L., Latency minimization for IRS-assisted mobile edge computing networks. Phys. Commun., 53, 2022, 101768.
Li, N., Hao, W., Zhou, F., Yang, S., Al-Dhahir, N., Min-max latency optimization for IRS-aided cell-free mobile edge computing systems. 2022 arXiv preprint arXiv:2206.04205.
Peng, Z., Weng, R., Zhang, Z., Pan, C., Wang, J., Active reconfigurable intelligent surface for mobile edge computing. IEEE Wireless Commun. Lett. 11:12 (2022), 2482–2486.
Zhang, X., Wang, J., Poor, H.V., Joint beamforming and trajectory optimizations for statistical delay and error-rate bounded QoS over MIMO-UAV/IRS-Based 6G mobile edge computing networks using FBC. IEEE 42nd International Conference on Distributed Computing Systems, ICDCS, 2022, IEEE, Bologna, Italy, 983–993.
Airod, F.E., Merluzzi, M., Di Lorenzo, P., Strinati, E.C., Reconfigurable intelligent surface aided mobile edge computing over intermittent mmwave links. 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication, SPAWC, 2022, IEEE, 1–5.
Lu, J., Chen, L., Xia, J., Zhu, F., Tang, M., Fan, C., Ou, J., Analytical offloading design for mobile edge computing-based smart internet of vehicle. EURASIP J. Adv. Signal Process., 2022(1), 2022, 44.
Hua, S., Shi, Y., Reconfigurable intelligent surface for green edge inference in machine learning. 2019 IEEE Globecom Workshops, GC Wkshps, 2019, IEEE, 1–6.
Xie, W., Li, B., Xiong, Y., Liu, W., Ou, J., Fan, D., Energy efficient collaborative computation for double-RIS assisted mobile edge networks. Phys. Commun., 53, 2022, 101774.
Guo, Y., Zhao, R., Lai, S., Fan, L., Lei, X., Karagiannidis, G.K., Distributed machine learning for multiuser mobile edge computing systems. IEEE J. Sel. Top. Sign. Proces. 16:3 (2022), 460–473.
Sun, C., Ni, W., Bu, Z., Wang, X., Energy minimization for intelligent reflecting surface-assisted mobile edge computing. IEEE Trans. Wireless Commun. 21:8 (2022), 6329–6344.
Wang, B., Liu, R., Li, Y., Ding, C., Wang, J.-B., Zhang, H., Joint optimization of transmission and computing resource in IRS-assisted mobile edge computing system. IEEE Wireless Communications and Networking Conference, WCNC, 2022, IEEE, Austin, TX, USA, 381–386.
Zhang, J., Wang, R., Wu, J., Ai, L., Cache-aided MEC with the assistance of intelligent reflecting surface. IEEE Internet Things J., 2023.
Huang, X., Huang, G., Joint optimization of energy and task scheduling in wireless-powered IRS-assisted mobile edge computing systems. IEEE Internet Things J., 2023.
Li, Z., Chen, M., Yang, Z., Zhao, J., Wang, Y., Shi, J., Huang, C., Energy efficient reconfigurable intelligent surface enabled mobile edge computing networks with NOMA. IEEE Trans. Cognit. Commun. Netw. 7:2 (2021), 427–440.
Wang, Q., Zhou, F., Hu, H., Hu, R.Q., Energy-efficient design for IRS-assisted MEC networks with NOMA. 13th International Conference on Wireless Communications and Signal Processing, WCSP, 2021, IEEE, Changsha, China, 1–6.
Xu, Z., Liu, J., Zou, J., Wen, Z., Energy-efficient design for IRS-assisted NOMA-based mobile edge computing. IEEE Commun. Lett. 26:7 (2022), 1618–1622.
Luo, Z., Huang, G., Energy-efficient mobile edge computing in RIS-aided OFDM-NOMA relay networks. IEEE Trans. Veh. Technol. 72:4 (2022), 4654–4669.
Wen, Y., Zheng, T.-X., Tong, Y., Chen, X., Lin, M., Wang, W., Energy-efficient resource allocation for intelligent reflecting surface aided MEC networks. IEEE International Conference on Communications Workshops, ICC Workshops, 2022, IEEE, Seoul, South Korea, 1–6.
Zhang, X., Shen, Y., Yang, B., Zang, W., Wang, S., DRL based data offloading for intelligent reflecting surface aided mobile edge computing. IEEE Wireless Communications and Networking Conference, WCNC, 2021, IEEE, Nanjing, China, 1–7.
Shnaiwer, Y.N., Kaneko, M., Minimizing IoT energy consumption by IRS-aided UAV mobile edge computing. IEEE Netw. Lett. 5:1 (2022), 16–20.
Asim, M., Abd El-Latif, A.A., ELAffendi, M., Mashwani, W.K., Energy consumption and sustainable services in intelligent reflecting surface and unmanned aerial vehicles-assisted MEC system for large-scale internet of things devices. IEEE Trans. Green Commun. Netw. 6:3 (2022), 1396–1407.
Shnaiwer, Y.N., Kouzayha, N., Masood, M., Kaneko, M., Al-Naffouri, T.Y., Multihop task routing in UAV-assisted mobile-edge computing IoT networks with intelligent reflective surfaces. IEEE Internet Things J. 10:8 (2022), 7174–7188.
Qin, X., Song, Z., Hou, T., Yu, W., Wang, J., Sun, X., Joint optimization of resource allocation, phase shift and UAV trajectory for energy-efficient RIS-assisted UAV-enabled MEC systems. IEEE Trans. Green Commun. Netw., 2023 1–1.
Huang, N., Wang, T., Wu, Y., Wu, Q., Quek, T.Q., Integrated sensing and communication assisted mobile edge computing: An energy-efficient design via intelligent reflecting surface. IEEE Wireless Commun. Lett. 11:10 (2022), 2085–2089.
Yang, Y., Gong, Y., Wu, Y.-C., Energy optimization for intelligent reflecting surface assisted mobile edge computing. IEEE/CIC International Conference on Communications in China, ICCC, 2021, IEEE, Xiamen, China, 178–182.
Liu, Y., Su, Z., Wang, Y., Energy-efficient and physical-layer secure computation offloading in blockchain-empowered internet of things. IEEE Internet Things J. 10:8 (2022), 6598–6610.
Yang, Y., Gong, Y., Wu, Y.-C., Intelligent-reflecting-surface-aided mobile edge computing with binary offloading: Energy minimization for IoT devices. IEEE Internet Things J. 9:15 (2022), 12973–12983.
Wang, Z., Xu, D., Online optimization of intelligent reflecting surface-aided energy-efficient IoT-edge computing. Future Gener. Comput. Syst. 141 (2023), 611–625.
Guo, M., Mukherjee, M., Lloret, J., RIS-assisted edge-D2D cooperative edge computing for industrial applications. Comput. Commun. 206 (2023), 178–188.
Rasheed, I., Asif, M., Ihsan, A., Khan, W.U., Ahmed, M., Rabie, K.M., LSTM-based distributed conditional generative adversarial network for data-driven 5G-enabled maritime UAV communications. IEEE Trans. Intell. Transp. Syst. 24:2 (2022), 2431–2446.
Khan, W.U., Lagunas, E., Ali, Z., Javed, M.A., Ahmed, M., Chatzinotas, S., Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces. IEEE Wirel. Commun. 29:6 (2022), 22–28.
Xu, F., Ahmad, S., Ahmed, M., Raza, S., Khan, F., Ma, Y., Khan, W.U., et al. Beyond encryption: Exploring the potential of physical layer security in UAV networks. J. King Saud Univ. Comput. Inf. Sci., 2023, 101717.
Li, B., Wu, W., Li, Y., Zhao, W., Intelligent reflecting surface and artificial-noise-assisted secure transmission of MEC system. IEEE Internet Things J. 9:13 (2021), 11477–11488.
Ngo, K.-H., Nguyen, N.T., Dinh, T.Q., Hoang, T.-M., Juntti, M., Low-latency and secure computation offloading assisted by hybrid relay-reflecting intelligent surface. International Conference on Advanced Technologies for Communications, ATC, 2021, IEEE, Ho Chi Minh City, Vietnam, 306–311.
Yan, L., Wang, C., Zheng, W., Secure efficiency maximization for UAV-assisted mobile edge computing networks. Phys. Commun., 51, 2022, 101568.
Zhang, L., Lai, S., Xia, J., Gao, C., Fan, D., Ou, J., Deep reinforcement learning based IRS-assisted mobile edge computing under physical-layer security. Phys. Commun., 55, 2022, 101896.
Michailidis, E.T., Volakaki, M.-G., Miridakis, N.I., Vouyioukas, D., Optimization of secure computation efficiency in UAV-enabled RIS-assisted MEC-IoT networks with aerial and ground eavesdroppers. IEEE Trans. Commun. 72:7 (2024), 3994–4009.
Zhang, H., He, X., Wu, Q., Dai, H., Spectral graph theory based resource allocation for IRS-assisted multi-hop edge computing. IEEE INFOCOM-IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS, 2021, IEEE, Virtually, 1–6.
Lu, J., Lai, S., Xia, J., Tang, M., Fan, C., Ou, J., Fan, D., Performance analysis for IRS-assisted MEC networks with unit selection. Phys. Commun., 55, 2022, 101869.
Zhao, R., Fan, C., Ou, J., Fan, D., Ou, J., Tang, M., Impact of direct links on intelligent reflect surface-aided MEC networks. Phys. Commun., 55, 2022, 101905.
Ha, D.-B., Truong, V.-T., Lee, Y., Intelligent reflecting surface assisted RF energy harvesting mobile edge computing NOMA networks: Performance analysis and optimization. EAI Endors. Trans. Ind. Netw. Intell. Syst., 9(32), 2022.
Mahbub, M., Shubair, R.M., Intelligent reflecting surfaces for multi-access edge computing in 6G wireless networks. IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS, 2022, IEEE, Toronto, Canada, 1–5.
Zhuang, S., He, Y., Yu, F.R., Gao, C., Pan, W., Ming, Z., When multi-access edge computing meets multi-area intelligent reflecting surface: A multi-agent reinforcement learning approach. 2022 IEEE/ACM 30th International Symposium on Quality of Service, IWQoS, 2022, IEEE, 1–10.
Wang, D., Li, X., Pang, L., He, Y., Zhou, F., Wang, L., Zhang, R., IRS-aided secure mobile edge computing for NOMA networks. 2022 IEEE/CIC International Conference on Communications in China, ICCC, 2022, IEEE, Foshan, China, 25–30.
Xu, Y., Zhang, T., Liu, Y., Yang, D., Xiao, L., Tao, M., Computation capacity enhancement by joint UAV and RIS design in IoT. IEEE Internet Things J. 9:20 (2022), 20590–20603.
Michailidis, E.T., Maliatsos, K., Skoutas, D.N., Vouyioukas, D., Skianis, C., Secure UAV-aided mobile edge computing for IoT: A review. IEEE Access 10 (2022), 86353–86383.
Chen, J., Cao, X., Yang, P., Xiao, M., Ren, S., Zhao, Z., Wu, D.O., Deep reinforcement learning based resource allocation in multi-UAV-aided MEC networks. IEEE Trans. Commun. 71:1 (2022), 296–309.
Xie, H., Li, D., To reflect or not to reflect: On-off control and number configuration for reflecting elements in RIS-aided wireless systems. 2023 arXiv preprint arXiv:2304.10322.
Xu, D., Li, Y., Li, J., Ahmed, M., Hui, P., Joint topology control and resource allocation for network coding enabled D2D traffic offloading. IEEE Access 5 (2017), 22916–22926.
Qiao, Y., Niu, Y., Han, Z., Mao, S., He, R., Wang, N., Zhong, Z., Ai, B., Joint optimization of resource allocation and user association in multi-frequency cellular networks assisted by RIS. IEEE Trans. Veh. Technol., 2023, 1–17.
Alexandropoulos, G.C., Phan-Huy, D.-T., Katsanos, K.D., Crozzoli, M., Wymeersch, H., Popovski, P., Ratajczak, P., Bénédic, Y., Hamon, M.-H., Gonzalez, S.H., et al. RIS-enabled smart wireless environments: Deployment scenarios, network architecture, bandwidth and area of influence. EURASIP J. Wireless Commun. Networking, 2023(1), 2023, 103.
Hua, H., Li, Y., Wang, T., Dong, N., Li, W., Cao, J., Edge computing with artificial intelligence: A machine learning perspective. ACM Comput. Surv. 55:9 (2023), 1–35.
Li, Q., El-Hajjar, M., Hemadeh, I., Shojaeifard, A., Mourad, A.A., Hanzo, L., Reconfigurable intelligent surface aided amplitude-and phase-modulated downlink transmission. IEEE Trans. Veh. Technol. 72:6 (2023), 8146–8151.
Laue, F., Jamali, V., Schober, R., RIS-assisted device activity detection with statistical channel state information. IEEE Trans. Wireless Commun., 2023.
Peng, B., Besser, K.-L., Raghunath, R., Jamali, V., Jorswieck, E.A., RISnet: A scalable approach for reconfigurable intelligent surface optimization with partial CSI. 2023 arXiv preprint arXiv:2305.00667.
Muhammad, A., Elhattab, M., Arfaoui, M.A., Al-Hilo, A., Assi, C., Age of information optimization in RIS-assisted wireless networks. IEEE Trans. Netw. Serv. Manag., 2023.
Ranaweera, P., Yadav, A.K., Liyanage, M., Jurcut, A.D., A novel authentication protocol for 5G gnodebs in service migration scenarios of MEC. IEEE Trans. Dependable Secure Comput., 2023, 1–18.
Nardini, G., Noferi, A., Stea, G., Platooning-as-a-service in a multi-operator ETSI MEC environment. IEEE Access 11 (2023), 60040–60058.