Parkinson's Disease; patient-centeredness; personalized medicine; acceptance of digital medical devices; patient preferences; Digital Medical Devices
Disciplines :
Public health, health care sciences & services
Author, co-author :
PACCOUD, Ivana ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Digital Medicine ; Department of Precision Medicine, Luxembourg Institute of Health, Strassen, Luxembourg ; Esch-sur-Alzette, Luxembourg
Valero, Mayca; Asociación Parkinson Madrid (APM), Madrid, Spain
Carrasco Marín, Laura; Asociación Parkinson Madrid (APM), Madrid, Spain
Bontridder, Noémi; Research Centre in Information, Law and Society, Namur Digital Institute, University of Namur, Namur, Belgium
Ibrahim, Alzhraa; Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany ; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
Winkler, Jüergen; Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Erlangen, Germany ; Department of Molecular Neurology, University of Erlangen, Erlangen, Germany
Fomo, Messaline; Department of Precision Medicine, Luxembourg Institute of Health, Strassen, Luxembourg ; Department of Digital Medicine, Centre for Systems Biomedicine, University of Luxembourg, Luxembourg ; Esch-sur-Alzette, Luxembourg
SAPIENZA, Stefano ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Digital Medicine ; Department of Precision Medicine, Luxembourg Institute of Health, Strassen, Luxembourg ; Esch-sur-Alzette, Luxembourg
Khoury, Fouad; Sorbonne University, Paris ; Brain Institute -ICM, Assistance Publique Hôpitaux de Paris, Inserm ; Aachen International Center for IT, CNRS, Pitié-Salpêtrière Hospital, Paris, France ; University of Bonn, Bonn, Germany
Corvol, Jean-Christophe; Department of Molecular Neurology, University of Erlangen, Erlangen, Germany
Fröhlich, Holger; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
KLUCKEN, Jochen ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Digital Medicine ; Department of Precision Medicine, Luxembourg Institute of Health, Strassen, Luxembourg ; Esch-sur-Alzette, Luxembourg ; Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
Dorsey ER Sherer T Okun MS Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. (2018) 8:S3–8. doi: 10.3233/JPD-181474
Klucken J Krüger R Schmidt P Bloem BR. Management of Parkinson’s disease 20 years from now: towards digital health pathways. J Parkinsons Dis. (2018) 8:S85–94.
Eskofier BM Klucken J. Predictive models for health deterioration: understanding disease pathways for personalized medicine. Annu Rev Biomed Eng. (2023) 25:131–56. doi: 10.1146/annurev-bioeng-110220-030247, PMID: 36854259
Fröhlich H Bontridder N Petrovska-Delacréta D Glaab E Kluge F Yacoubi ME et al. Leveraging the potential of digital technology for better individualized treatment of Parkinson’s disease. Front Neurol. (2022) 13:788427. doi: 10.3389/fneur.2022.788427, PMID: 35295840
Espay AJ Bonato P Nahab FB Maetzler W Dean JM Klucken J et al. Technology in Parkinson’s disease: challenges and opportunities. Mov Disord Off J Mov Disord Soc. (2016) 31:1272–82. doi: 10.1002/mds.26642, PMID: 27125836
Espay AJ Hausdorff JM Sánchez-Ferro Á Klucken J Merola A Bonato P et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov. Disord. Off. J. Mov. Disord. Soc. (2019) 34:657–63. doi: 10.1002/mds.27671, PMID: 30901495
Post B Merkus MP de Bie RMA de Haan RJ Speelman JD. Unified Parkinson’s disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? Mov Disord. (2005) 20:1577–84. doi: 10.1002/mds.20640, PMID: 16116612
Paccoud I Leist AK Schwaninger I van Kessel R Klucken J. Socio-ethical challenges and opportunities for advancing diversity, equity, and inclusion in digital medicine. Digit Health. (2024) 10:20552076241277705. doi: 10.1177/20552076241277705, PMID: 39372817
Uncovska M Freitag B Meister S Fehring L. Patient acceptance of prescribed and fully reimbursed mHealth apps in Germany: an UTAUT2-based online survey study. J Med Syst. (2023) 47:14. doi: 10.1007/s10916-023-01910-x, PMID: 36705853
Gordon NP Crouch E. Digital information technology use and patient preferences for internet-based health education modalities: cross-sectional survey study of middle-aged and older adults with chronic health conditions. JMIR Aging. (2019) 2:e12243. doi: 10.2196/12243, PMID: 31518291
Marxreiter F Buttler U Gassner H Gandor F Gladow T Eskofier B et al. The use of digital technology and Media in German Parkinson’s disease patients. J Parkinsons Dis. (2020) 10:717–27. doi: 10.3233/JPD-191698
Paccoud I Baumann M Le Bihan E Pétré B Breinbauer M Böhme et al. Socioeconomic and behavioural factors associated with access to and use of patient electronic health records: a cross-sectional analysis of four European countries. BMC medical informatics and decision making, (2020) 21, 1–11.
Longoni C. Bonezzi A. Morewedge C. Resistance to medical artificial intelligence. (2019). SSRN Scholarly Paper at: https://papers.ssrn.com/abstract=3375716.
Juravle G Boudouraki A Terziyska M Rezlescu C. Chapter 14- trust in artificial intelligence for medical diagnoses In: Parkin BL, editor. Progress in brain research, vol. 253. Amsterdam, Netherlands: Elsevier (2020). 263–82.
Ozanne A Johansson D Hällgren Graneheim U Malmgren K Bergquist F Alt Murphy M. Wearables in epilepsy and Parkinson’s disease-a focus group study. Acta Neurol Scand. (2018) 137:188–94. doi: 10.1111/ane.12798, PMID: 28714112
LoBuono DL Shea KS Tovar A Leedahl SN Mahler L Xu F et al. Acceptance and perception of digital health for managing nutrition in people with Parkinson’s disease and their caregivers and their digital competence in the United States: a mixed-methods study. Health Sci Rep. (2021) 4:e412. doi: 10.1002/hsr2.412, PMID: 34796282
Riggare S Stamford J Hägglund M. A long way to go: patient perspectives on digital health for Parkinson’s disease. J Parkinsons Dis. (2021) 11:S5–S10. doi: 10.3233/JPD-202408
Duroseau N Abramson T Pergament K Chan V Govindavari JP Ciraco C et al. Acceptance of technology-based tools in a sample of Parkinson’s patients. Chronic Illn. (2017) 13:3–13. doi: 10.1177/1742395316653453, PMID: 27269275
Graeber J Warmerdam E Aufenberg S Bull C Davies K Dixon J et al. Technology acceptance of digital devices for home use: qualitative results of a mixed methods study. Digit Health. (2023) 9:20552076231181239. doi: 10.1177/20552076231181239, PMID: 37361435
Bontridder N Hähnel T Valero MM Marín LC Corvol JC El-Yacoubi MA et al. Leveraging the potential of digital technology for personalised medicine. Journal of AI Law and Regulation (2024) 1, 249–53.
Helleman J Johnson B Holdom C Hobson E Murray D Steyn FJ et al. Patient perspectives on digital healthcare technology in care and clinical trials for motor neuron disease: an international survey. J Neurol. (2022) 269:6003–13. doi: 10.1007/s00415-022-11273-x, PMID: 35849154
Godoy Junior CA Miele F Mäkitie L Fiorenzato E Koivu M Bakker LJ et al. Attitudes toward the adoption of remote patient monitoring and artificial intelligence in Parkinson’s disease management: perspectives of patients and neurologists. Patient-Patient-Centered Outcomes Res. (2024) 17:275–85. doi: 10.1007/s40271-023-00669-0, PMID: 38182935
Sharpe D. Your chi-square test is statistically significant: now what? Pract Assess Res Eval. (2015) 20:n8. doi: 10.7275/tbfa-x148
Boise L Wild K Mattek N Ruhl M Dodge HH Kaye J. Willingness of older adults to share data and privacy concerns after exposure to unobtrusive in-home monitoring. Gerontechnol Int J Fundam Asp Technol Serve Ageing Soc. (2013) 11:428–35. doi: 10.4017/gt.2013.11.3.001.00
Dittrich F Mielitz A Pustozerov E Lawin D von Jan U Albrecht UV. Digital health applications from a government-regulated directory of reimbursable health apps in Germany—a systematic review for evidence and bias. Health. (2023) 9:35. doi: 10.21037/mhealth-23-17, PMID: 38023782
De Vleeschhauwer J Broeder S Janssens L Heremans E Nieuwboer A Nackaerts E. Impaired touchscreen skills in Parkinson’s disease and effects of medication. Mov Disord Clin Pract. (2021) 8:546–54. doi: 10.1002/mdc3.13179, PMID: 33981787
Botros A Schütz N Camenzind M Urwyler P Bolliger D Vanbellingen T et al. Long-term home-monitoring sensor technology in patients with Parkinson’s disease—acceptance and adherence. Sensors. (2019) 19:5169. doi: 10.3390/s19235169, PMID: 31779108
Venkatesh V Morris MG Davis GB Davis FD. User acceptance of information technology: toward a unified view. MIS Q. (2003) 27:425–78. doi: 10.2307/30036540
Raab R Küderle A Zakreuskaya A Stern AD Klucken J Kaissis G et al. Federated electronic health records for the European health data space. Lancet Digit Health. (2023) 5:e840–7. doi: 10.1016/S2589-7500(23)00156-5
Giuffrè M Shung DL. Harnessing the power of synthetic data in healthcare: innovation, application, and privacy. NPJ Digit Med. (2023) 6:1–8. doi: 10.1038/s41746-023-00927-3
Regulation P. Regulation (EU) 2016/679 of the European Parliament and of the council. Regul Eu. (2016) 679:2016.
Pfaeffli Dale L Whittaker R Dixon R Stewart R Jiang Y Carter K et al. Acceptability of a Mobile health exercise-based cardiac rehabilitation intervention: a RANDOMIZED TRIAL. J Cardiopulm Rehabil Prev. (2015) 35:312–9. doi: 10.1097/HCR.0000000000000125, PMID: 26181037
van Eijk RP Beelen A Kruitwagen ET Murray D Radakovic R Hobson E et al. A road map for remote digital health technology for motor neuron disease. J Med Internet Res. (2021) 23:e28766. doi: 10.2196/28766
Virbel-Fleischman C Rétory Y Hardy S Huiban C Corvol JC Grabli D. Body-worn sensors for Parkinson’s disease: a qualitative approach with patients and healthcare professionals. PLoS One. (2022) 17:e0265438. doi: 10.1371/journal.pone.0265438, PMID: 35511812