Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A DSL for Testing LLMs for Fairness and Bias
Morales, Sergio; Clarisó, Robert; CABOT, Jordi
2024In Proceedings - MODELS 2024: ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems
Peer reviewed
 

Documents


Texte intégral
A_DSL_for_Testing_LLMs_for_Fairness_and_Bias___MODELS__24.pdf
Postprint Auteur (960.78 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Bias; Domain-Specific Language; Ethics; Large Language Models; Model-Driven Engineering; Red Teaming; Testing; Development teams; Domains specific languages; Enhanced software; Ethical concerns; Language model; Large language model; Model-driven Engineering; Red teaming; Software-systems; Modeling and Simulation
Résumé :
[en] Large language models (LLMs) are increasingly integrated into software systems to enhance them with generative AI capabilities. But LLMs may reflect a biased behavior, resulting in systems that could discriminate against gender, age or ethnicity, among other ethical concerns. Society and upcoming regulations will force companies and development teams to ensure their AI-enhanced software is ethically fair. To facilitate such ethical assessment, we propose LangBiTe, a model-driven solution to specify ethical requirements, and customize and automate the testing of ethical biases in LLMs. The evaluation can raise awareness on the biases of the LLM-based components of the system and/or trigger a change in the LLM of choice based on the requirements of that particular application. The model-driven approach makes both the requirements specification and the test generation platform-independent, and provides end-to-end traceability between the requirements and their assessment. We have implemented an open-source tool set, available on GitHub, to support the application of our approach.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Morales, Sergio ;  Universitat Oberta de Catalunya, Barcelona, Spain
Clarisó, Robert ;  Universitat Oberta de Catalunya, Barcelona, Spain
CABOT, Jordi  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PI Cabot
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A DSL for Testing LLMs for Fairness and Bias
Date de publication/diffusion :
22 septembre 2024
Nom de la manifestation :
Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems
Lieu de la manifestation :
Linz, Aut
Date de la manifestation :
22-09-2024 => 27-09-2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings - MODELS 2024: ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems
Maison d'édition :
Association for Computing Machinery, Inc
ISBN/EAN :
9798400705045
Peer reviewed :
Peer reviewed
Projet FnR :
FNR16544475 - Better Smart Software Faster (Besser) - An Intelligent Low-code Infrastructure For Smart Software, 2020 (01/01/2022-...) - Jordi Cabot
Subventionnement (détails) :
This work has been partially funded by the AIDOaRt project (ECSEL Joint Undertaking, grant agreement 101007350); the research network RED2022-134647-T (MCIN/AEI/10.13039/501100011033); the Luxembourg National Research Fund (FNR) PEARL program (grant agreement 16544475); and the Spanish government (PID2020-114615RB-I00/AEI/10.13039/501100011033, project LOCOSS).
Disponible sur ORBilu :
depuis le 25 novembre 2024

Statistiques


Nombre de vues
85 (dont 2 Unilu)
Nombre de téléchargements
48 (dont 1 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
5
OpenCitations
 
0
citations OpenAlex
 
8
citations WoS
 
5

Bibliographie


Publications similaires



Contacter ORBilu