Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
TUNE-FL: adapTive semi-synchronoUs semi-deceNtralizEd Federated Learning
Jmal, Houssem; Piamrat, Kandaraj; AOUEDI, Ons
2024In TUNE-FL: adapTive semi-synchronoUs semi-deceNtralizEd Federated Learning
Peer reviewed
 

Documents


Texte intégral
_TUNE_FL (1).pdf
(565.08 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Semi-Decentralized federated learning; edge device heterogeneity; adaptive synchronization
Résumé :
[en] Today, Federated Learning (FL) stands out as the solution to addressing the challenges of distributed computing and empowering a wide range of edge devices with artificial intelligence capabilities. One variant of FL called semi-decentralized FL (SDFL) enables multiple server units to coordinate the learning task instead of relying on only one central server, hence preventing single-point failures. However, SDFL requires careful consideration regarding the coordination between server nodes, and dealing with the heterogeneous computing resources and data distributions across end devices (FL clients). Therefore, we propose TUNE-FL, an adapTive semi-synchronoUs semi-deceNtralizEd Federated Learning that addresses the clients' heterogeneity challenges. TUNE-FL alleviates these challenges by (i) ensuring consensus regardless of the network topology, and (ii) deploying an adaptive semi-synchronous mechanism for coordinating the learning process across all nodes while taking into consideration the heterogeneity presented by end devices. We evaluated TUNE-FL for the intrusion detection system (IDS) datasets and compared it with the three most representative baseline models. The experimental results demonstrate that TUNE-FL outperforms the baselines in accuracy while greatly reducing the duration of FL training by approximately 97 times.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Jmal, Houssem;  UMR 6004, Nantes University, École Centrale Nantes, IMT Atlantique, CNRS, INRIA, Nantes, France
Piamrat, Kandaraj;  UMR 6004, Nantes University, École Centrale Nantes, IMT Atlantique, CNRS, INRIA, Nantes, France
AOUEDI, Ons  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
TUNE-FL: adapTive semi-synchronoUs semi-deceNtralizEd Federated Learning
Date de publication/diffusion :
2024
Nom de la manifestation :
IEEE Consumer Communications and Networking Conference (CCNC)
Date de la manifestation :
10–13 January 2025
Titre de l'ouvrage principal :
TUNE-FL: adapTive semi-synchronoUs semi-deceNtralizEd Federated Learning
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 25 novembre 2024

Statistiques


Nombre de vues
108 (dont 2 Unilu)
Nombre de téléchargements
109 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu