M. Shcherbakova, R. Noumeir, M. Levy, A. Bridier, V. Lestrade, and P. Jouvet, "Optical thermography infrastructure to assess thermal distribution in critically ill children," IEEE Open Journal of Engineering in Medicine and Biology, vol. 3, pp. 1-6, 2021.
A. Bridier, M. Shcherbakova, A. Kawaguchi, N. Poirier, C. Said, R. Noumeir, and P. Jouvet, "Hemodynamic assessment in children after cardiac surgery: A pilot study on the value of infrared thermography," Frontiers in Pediatrics, vol. 11, p. 1083962, 2023.
V. Prinsen, P. Jouvet, S. Al Omar, G. Masson, A. Bridier, and R. Noumeir, "Automatic eye localization for hospitalized infants and children using convolutional neural networks," International Journal of Medical Informatics, vol. 146, p. 104344, 2021.
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015, pp. 234-241.
Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, "Unet++: Redesigning skip connections to exploit multiscale features in image segmentation," IEEE transactions on medical imaging, vol. 39, no. 6, pp. 1856-1867, 2019.
H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y.-W. Chen, and J. Wu, "Unet 3+: A full-scale connected unet for medical image segmentation," in ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2020, pp. 1055-1059.
M. Krithika alias AnbuDevi and K. Suganthi, "Review of semantic segmentation of medical images using modified architectures of unet," Diagnostics, vol. 12, no. 12, p. 3064, 2022.
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs," IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848, 2017.
L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, "Rethinking atrous convolution for semantic image segmentation," arXiv preprint arXiv:1706.05587, 2017.
L. Ke, Y.-W. Tai, and C.-K. Tang, "Deep occlusion-aware instance segmentation with overlapping bilayers," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 4019-4028.
X. Yuan, A. Kortylewski, Y. Sun, and A. Yuille, "Robust instance segmentation through reasoning about multi-object occlusion," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 141-11 150.
J. Lazarow, K. Lee, K. Shi, and Z. Tu, "Learning instance occlusion for panoptic segmentation," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10 720-10 729.
S. Back, J. Lee, T. Kim, S. Noh, R. Kang, S. Bak, and K. Lee, "Unseen object amodal instance segmentation via hierarchical occlusion modeling," in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022, pp. 5085-5092.
R. Strudel, R. Garcia, I. Laptev, and C. Schmid, "Segmenter: Transformer for semantic segmentation," in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 7262-7272.
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, "Segformer: Simple and efficient design for semantic segmentation with transformers," Advances in Neural Information Processing Systems, vol. 34, pp. 12 077-12 090, 2021.
H. Shi, M. Hayat, and J. Cai, "Transformer scale gate for semantic segmentation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 3051-3060.
Z. Li, K. Ren, X. Jiang, B. Li, H. Zhang, and D. Li, "Domain generalization using pretrained models without fine-tuning," arXiv preprint arXiv:2203.04600, 2022.
H. Hua, X. Li, D. Dou, C.-Z. Xu, and J. Luo, "Fine-tuning pre-trained language models with noise stability regularization," arXiv preprint arXiv:2206.05658, 2022.
A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., "Segment anything," arXiv preprint arXiv:2304.02643, 2023.
J. Zhang, K. Ma, S. Kapse, J. Saltz, M. Vakalopoulou, P. Prasanna, and D. Samaras, "Sam-path: A segment anything model for semantic segmentation in digital pathology," arXiv preprint arXiv:2307.09570, 2023.
Y. Momma, W. Wang, E. Simo-Serra, S. Iizuka, R. Nakamura, and H. Ishikawa, "P 2 net: A post-processing network for refining semantic segmentation of lidar point cloud based on consistency of consecutive frames," in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020, pp. 4110-4115.
F. Li, H. Zhang, P. Sun, X. Zou, S. Liu, J. Yang, C. Li, L. Zhang, and J. Gao, "Semantic-sam: Segment and recognize anything at any granularity," arXiv preprint arXiv:2307.04767, 2023.
G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le, and B. Zoph, "Simple copy-paste is a strong data augmentation method for instance segmentation," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 2918-2928.
Z. He, L. Xie, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, "Data augmentation revisited: Rethinking the distribution gap between clean and augmented data," arXiv preprint arXiv:1909.09148, 2019.
L. Wu, H. Lin, Y. Huang, and S. Z. Li, "Knowledge distillation improves graph structure augmentation for graph neural networks," Advances in Neural Information Processing Systems, vol. 35, pp. 11 815-11 827, 2022.
H. Zhu, B. Chen, and C. Yang, "Understanding why vit trains badly on small datasets: An intuitive perspective," arXiv preprint arXiv:2302.03751, 2023.
A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L. Beyer, "How to train your vit? data, augmentation, and regularization in vision transformers," arXiv preprint arXiv:2106.10270, 2021.
L. Deininger, B. Stimpel, A. Yuce, S. Abbasi-Sureshjani, S. Schönenberger, P. Ocampo, K. Korski, and F. Gaire, "A comparative study between vision transformers and cnns in digital pathology," arXiv preprint arXiv:2206.00389, 2022.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft coco: Common objects in context," in Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 2014, pp. 740-755.
N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang, "Convolutional neural networks for medical image analysis: Full training or fine tuning?" IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1299-1312, 2016.
A. Brock, T. Lim, J. M. Ritchie, and N. Weston, "Freezeout: Accelerate training by progressively freezing layers," arXiv preprint arXiv:1706.04983, 2017.
H. M. Herrera Del Aguila and J. A. Herrera Quispe, "Optimal layer selection on deep convolutional neural networks using backward freezing and binary search," in Annual International Conference on Information Management and Big Data. Springer, 2022, pp. 175-190.
I. Loshchilov and F. Hutter, "Sgdr: Stochastic gradient descent with warm restarts," arXiv preprint arXiv:1608.03983, 2016.