graphene; bottom-up; cobalt; nickel; doping; transition metals; growth; synthesis; chemical vapour deposition; CVD; spintronics; gas sensing; electrochemistry; catalysis; scanning tunneling microscopy; x-ray photoelectron spectroscopy; density functional theory; STM; DFT; XPS; transmission electron microscopy; TEM; electron energy loss spectroscopy; EELS
Abstract :
[en] Introducing heteroatoms into graphene is a powerful strategy to modulate its catalytic, electronic, and magnetic properties. At variance with the cases of nitrogen (N)- and boron (B)-doped graphene, a scalable method for incorporating transition metal atoms in the carbon (C) mesh is currently lacking, limiting the applicative interest of model system studies. This work presents a during-growth synthesis enabling the incorporation of cobalt (Co) alongside nickel (Ni) atoms in graphene on a Ni(111) substrate. Single atoms are covalently stabilized within graphene double vacancies, with a Co load ranging from 0.07 to 0.22% relative to C atoms, controllable by synthesis parameters. Structural characterization involves variable-temperature scanning tunneling microscopy and ab initio calculations. The Co- and Ni-codoped layer is transferred onto a transmission electron microscopy grid, confirming stability through scanning transmission electron microscopy and electron energy loss spectroscopy. This method holds promise for applications in spintronics, gas sensing, electrochemistry and catalysis, and potential extension to graphene incorporation of similar metals.
Disciplines :
Physics
Author, co-author :
Chesnyak, Valeria ; Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy ; CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
Perilli, Daniele; Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
PANIGHEL, Mirco ; University of Luxembourg ; CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
Namar, Alessandro ; Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy
Markevich, Alexander; University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
Bui, Thuy An; University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
Ugolotti, Aldo ; Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
Farooq, Ayesha ; Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy ; CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
Stredansky, Matus ; CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
Kofler, Clara ; University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
Cepek, Cinzia ; CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
Comelli, Giovanni ; Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy ; CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
Kotakoski, Jani ; University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
Di Valentin, Cristiana ; Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
Africh, Cristina ; CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
H2020 - 101007417 - NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT
Funders :
Union Européenne
Funding text :
This work was supported by the Italian MIUR (PRIN 2017, MADAM—Metal Activated 2D cArbon-based platforMs; grant 2017NYPHN8 to V.C., C.A., C.C., and C.D.V.); European Union - NextGenerationEU - Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Investimento 1.3 (grant no. PE_00000023, within the National Quantum Science and Technology Institute (NQSTI), to G.C.); European Union NextGenerationEU - Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Investimento 1.3 - Fondazione NEST - “Network 4 Energy Sustainable Transition” - Spoke 4, Clean hydrogen and final uses (grant no. PE00000021 to C.A. and C.C.); European Union - NextGenerationEU through the Italian Ministry of University and Research under PNRR - M4C2I1.4 ICSC - Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing (grant no. CN00000013 and innovation grant with Leonardo and Ferrovie dello Stato, to D.P. and C.D.V.); JRA Eni-CNR Linea 3 (to C.C. and A.F.); and European Union’s Horizon 2020 research and innovation programme (grant 101007417 NFFA-Europe Pilot, to M.P.).
A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, R. M. Nieminen, Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009).
F. Joucken, L. Henrard, J. Lagoute, Electronic properties of chemically doped graphene. Phys. Rev. Mater. 3, 110301 (2019).
J. Wang, L. Gan, W. Zhang, Y. Peng, H. Yu, Q. Yan, X. Xia, X. Wang, In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci. Adv. 4, eaap7970 (2018).
H. Fei, J. Dong, C. Wan, Z. Zhao, X. Xu, Z. Lin, Y. Wang, H. Liu, K. Zang, J. Luo, S. Zhao, W. Hu, W. Yan, I. Shakir, Y. Huang, X. Duan, Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, e1802146 (2018).
T. Kropp, M. Mavrikakis, Transition metal atoms embedded in graphene: How nitrogen doping increases CO oxidation activity. ACS Catal. 9, 6864-6868 (2019).
G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H. L. Wang, L. Dai, Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 29, 83-110 (2016).
T. Kosmala, A. Baby, M. Lunardon, D. Perilli, H. Liu, C. Durante, C. Di Valentin, S. Agnoli, G. Granozzi, Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal-graphene interfaces. Nat. Catal. 4, 850-859 (2021).
Y. Jiao, Y. Zheng, K. Davey, S. Z. Qiao, Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016).
D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218-230 (2016).
Q. Zhang, J. Guan, Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30, 2000768 (2020).
D. Cortés-Arriagada, N. Villegas-Escobar, D. E. Ortega, Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments. Appl. Surf. Sci. 427, 227-236 (2018).
M. Zhou, Y. H. Lu, Y. Q. Cai, C. Zhang, Y. P. Feng, Adsorption of gas molecules on transition metal embedded graphene: A search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 22, 385502 (2011).
R. Langer, K. Mustonen, A. Markevich, M. Otyepka, T. Susi, P. Błoński, Graphene lattices with embedded transition-metal atoms and tunable magnetic anisotropy energy: Implications for spintronic devices. ACS Appl. Nano Mater. 5, 1562-1573 (2022).
P. C. Lin, R. Villarreal, S. Achilli, H. Bana, M. N. Nair, A. Tejeda, K. Verguts, S. De Gendt, M. Auge, H. Hofsäss, S. De Feyter, G. Di Santo, L. Petaccia, S. Brems, G. Fratesi, L. M. C. Pereira, Supplementary: Doping graphene with substitutional Mn. ACS Nano 15, 5449-5458 (2021).
Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24, 5610-5616 (2012).
A. N. Banerjee, Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 8, 20170056 (2018).
X. Mao, G. Kour, C. Yan, Z. Zhu, A. Du, Single transition metal atom-doped graphene supported on a nickel substrate: Enhanced oxygen reduction reactions modulated by electron coupling. J. Phys. Chem. C 123, 3703-3710 (2019).
F. Donati, Q. Dubout, G. Autès, F. Patthey, F. Calleja, P. Gambardella, O. V. Yazyev, H. Brune, Magnetic moment and anisotropy of individual Co atoms on graphene. Phys. Rev. Lett. 111, 236801 (2013).
W. Hu, C. Wang, H. Tan, H. Duan, G. Li, N. Li, Q. Ji, Y. Lu, Y. Wang, Z. Sun, F. Hu, W. Yan, Embedding atomic cobalt into graphene lattices to activate room-temperature ferromagnetism. Nat. Commun. 12, 1854 (2021).
D. Y. Usachov, A. V. Fedorov, O. Y. Vilkov, A. E. Petukhov, A. G. Rybkin, A. Ernst, M. M. Otrokov, E. V. Chulkov, I. I. Ogorodnikov, M. V. Kuznetsov, L. V. Yashina, E. Y. Kataev, A. V. Erofeevskaya, V. Y. Voroshnin, V. K. Adamchuk, C. Laubschat, D. V. Vyalikh, Large-scale sublattice asymmetry in pure and boron-doped graphene. Nano Lett. 16, 4535-4543 (2016).
C. N. R. Rao, K. Gopalakrishnan, A. Govindaraj, Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9, 324-343 (2014).
D. Y. Usachov, A. V. Fedorov, A. E. Petukhov, O. Y. Vilkov, A. G. Rybkin, M. M. Otrokov, A. Arnau, E. V. Chulkov, L. V. Yashina, M. Farjam, V. K. Adamchuk, B. V. Senkovskiy, C. Laubschat, D. V. Vyalikh, Epitaxial B-graphene: Large-scale growth and atomic structure. ACS Nano 9, 7314-7322 (2015).
S. Fiori, D. Perilli, M. Panighel, C. Cepek, A. Ugolotti, A. Sala, H. Liu, G. Comelli, C. Di Valentin, C. Africh, “Inside out” growth method for high-quality nitrogen-doped graphene. Carbon 171, 704-710 (2021).
S. Wei, A. Li, J. C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W. C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856-861 (2018).
A. Trentino, K. Mizohata, G. Zagler, M. Längle, K. Mustonen, T. Susi, J. Kotakoski, E. H. Åhlgren, Two-step implantation of gold into graphene. 2D Mater. 9, 025011 (2022).
G. Zagler, M. Stecher, A. Trentino, F. Kraft, C. Su, A. Postl, M. Längle, C. Pesenhofer, C. Mangler, E. Harriet Åhlgren, A. Markevich, A. Zettl, J. Kotakoski, T. Susi, K. Mustonen, Beam-driven dynamics of aluminium dopants in graphene. 2D Mater. 9, 035009 (2022).
J. Zhao, Q. Deng, A. Bachmatiuk, G. Sandeep, A. Popov, J. Eckert, M. H. Rümmeli, Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 343, 1228-1232 (2014).
P. C. Lin, R. Villarreal, S. Achilli, H. Bana, M. N. Nair, A. Tejeda, K. Verguts, S. De Gendt, M. Auge, H. Hofsäss, S. De Feyter, G. Di Santo, L. Petaccia, S. Brems, G. Fratesi, L. M. C. Pereira, Doping graphene with substitutional Mn. ACS Nano 15, 5449-5458 (2021).
V. Carnevali, L. L. Patera, G. Prandini, M. Jugovac, S. Modesti, G. Comelli, M. Peressi, C. Africh, Doping of epitaxial graphene by direct incorporation of nickel adatoms. Nanoscale 11, 10358-10364 (2019).
O. Dyck, L. Zhang, M. Yoon, J. L. Swett, D. Hensley, C. Zhang, P. D. Rack, J. D. Fowlkes, A. R. Lupini, S. Jesse, Doping transition-metal atoms in graphene for atomic-scale tailoring of electronic, magnetic, and quantum topological properties. Carbon 173, 205-214 (2021).
P. C. Lin, R. Villarreal, H. Bana, Z. Zarkua, V. Hendriks, H. C. Tsai, M. Auge, F. Junge, H. Hofsäss, E. Tosi, P. Lacovig, S. Lizzit, W. Zhao, G. Di Santo, L. Petaccia, S. De Feyter, S. De Gendt, S. Brems, L. M. C. Pereira, Thermal annealing of graphene implanted with Mn at ultralow energies: From disordered and contaminated to nearly pristine graphene. J. Phys. Chem. C 126, 10494-10505 (2022).
A. Trentino, G. Zagler, M. Längle, J. Madsen, T. Susi, C. Mangler, E. H. Åhlgren, K. Mustonen, J. Kotakoski, Single atoms and metal nanoclusters anchored to graphene vacancies. Micron 184, 103667 (2024).
A. V. Ruban, H. L. Skriver, J. K. Nørskov, Surface segregation energies in transition-metal alloys. Phys. Rev. B 59, 15990-16000 (1999).
L. L. Patera, C. Africh, R. S. Weatherup, R. Blume, S. Bhardwaj, C. Castellarin-Cudia, A. Knop-Gericke, R. Schloegl, G. Comelli, S. Hofmann, C. Cepek, In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth. ACS Nano 7, 7901-7912 (2013).
L. L. Patera, F. Bianchini, C. Africh, C. Dri, G. Soldano, M. M. Mariscal, M. Peressi, G. Comelli, Real-time imaging of adatom-promoted graphene growth on nickel. Science 359, 1243-1246 (2018).
A. Baby, L. Trovato, C. Di Valentin, Single atom catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon 174, 772-788 (2021).
H. J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. Engl. 54, 14031-14035 (2015).
V. Chesnyak, S. Stavrić, M. Panighel, G. Comelli, M. Peressi, C. Africh, Carbide coating on nickel to enhance the stability of supported metal nanoclusters. Nanoscale 14, 3589-3598 (2022).
S. Stavrić, V. Chesnyak, S. del Puppo, M. Panighel, G. Comelli, C. Africh, Ž. Šljivančanin, M. Peressi, 1D selective confinement and diffusion of metal atoms on graphene. Carbon 215, 118486 (2023).
V. Chesnyak, S. Stavrić, M. Panighel, D. Povoledo, S. Puppo, M. Peressi, G. Comelli, C. Africh, Exceptionally stable cobalt nanoclusters on functionalized graphene. Small Struct. 5, 2400055 (2024).
L. Wang, X. Zhang, H. L. W. Chan, F. Yan, F. Ding, Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth. J. Am. Chem. Soc. 135, 4476-4482 (2013).
J. Shan, C. Ye, Y. Jiang, M. Jaroniec, Y. Zheng, S. Z. Qiao, Metal-metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022).
P. A. Denis, Heteroatom codoped graphene: The importance of nitrogen. ACS Omega 7, 45935-45961 (2022).
N. Mishra, S. Forti, F. Fabbri, L. Martini, C. Mcaleese, B. R. Conran, P. R. Whelan, A. Shivayogimath, B. S. Jessen, L. Buß, J. Falta, I. Aliaj, S. Roddaro, J. I. Flege, P. Bøggild, K. B. K. Teo, C. Coletti, Wafer-scale synthesis of graphene on sapphire: Toward Fab-compatible graphene. Small 15, e1904906 (2019).
H. Wördenweber, S. Karthäuser, A. Grundmann, Z. Wang, S. Aussen, H. Kalisch, A. Vescan, M. Heuken, R. Waser, S. H. Eifert, Atomically resolved electronic properties in single layer graphene on α-Al2O3(0001) by chemical vapor deposition. Sci. Rep. 12, 18743 (2022).
B. Deng, Z. Liu, H. Peng, Toward mass production of CVD graphene films. Adv. Mater. 31, e1800996 (2019).
Y. Zhu, H. Ji, H.-M. Cheng, R. S. Ruoff, Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 5, 90-101 (2018).
L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 697-699 (2012).
M. Tripathi, A. Mittelberger, K. Mustonen, C. Mangler, J. Kotakoski, J. C. Meyer, T. Susi, Cleaning graphene: Comparing heat treatments in air and in vacuum. Phys. Status Solidi RRL 11, 1700124 (2017).
A. Trentino, J. Madsen, A. Mittelberger, C. Mangler, T. Susi, K. Mustonen, J. Kotakoski, Atomic-level structural engineering of graphene on a mesoscopic scale. Nano Lett. 21, 5179-5185 (2021).
H. Inani, K. Mustonen, A. Markevich, E. X. Ding, M. Tripathi, A. Hussain, C. Mangler, E. I. Kauppinen, T. Susi, J. Kotakoski, Silicon substitution in nanotubes and graphene via intermittent vacancies. J. Phys. Chem. C 123, 13136-13140 (2019).
D. Nečas, P. Klapetek, Gwyddion: An open-source software for SPM data analysis. Centr. Eur. J.Phys. 10, 181-188 (2012).
D. Perilli, S. Fiori, M. Panighel, H. Liu, C. Cepek, M. Peressi, G. Comelli, C. Africh, C. Di Valentin, Mechanism of CO intercalation through the graphene/Ni(111) interface and effect of doping. J. Phys. Chem. Lett. 11, 8887-8892 (2020).
S. Del Puppo, V. Carnevali, D. Perilli, F. Zarabara, A. L. Rizzini, G. Fornasier, E. Zupanič, S. Fiori, L. L. Patera, M. Panighel, S. Bhardwaj, Z. Zou, G. Comelli, C. Africh, C. Cepek, C. Di Valentin, M. Peressi, Tuning graphene doping by carbon monoxide intercalation at the Ni(111) interface. Carbon 176, 253-261 (2021).
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892-7895 (1990).
A. Dal Corso, Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95, 337-350 (2014).
K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, D. C. Langreth, Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).
I. Hamada, M. Otani, Comparative van der Waals density-functional study of graphene on metal surfaces. Phys. Rev. B 82, 153412 (2010).
D. Perilli, D. Selli, H. Liu, E. Bianchetti, C. Di Valentin, h-BN defective layers as giant N-donor macrocycles for Cu adatom trapping from the underlying metal substrate. J. Phys. Chem. C 122, 23610-23622 (2018).
G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354-360 (2006).
H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188-5192 (1976).
J. Tersoff, D. R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805-813 (1985).
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272-1276 (2011).