CP-OFDM; Energy harvesting; Nonlinear rectifier model; SWIPT; Waveform design; WIT; WPT; Cyclic Prefix; Cyclic prefix of the orthogonal frequency-division multiplexing; Information and power transfers; Information transfers; Orthogonal frequency-division multiplexing; Rectifier model; Simultaneous wireless information and power transfer; Waveform designs; Wireless information transfer; Signal Processing; Computer Science Applications; Computer Networks and Communications
Abstract :
[en] Simultaneous wireless information and power transfer (SWIPT) has recently attracted researchers and may help to satisfy future technology demands. SWIPT allows wireless power transfer (WPT) and wireless information transfer (WIT) to coexist based on shared resources. Recent studies have shown that, due to the nonlinearity of the rectifiers, high-PAPR (peak to average power ratio) waveforms provide better performance in terms of energy harvesting, making the design of power signals essential. In addition, these power signals should consume the smallest amount of resources for the WIT. In this paper, a new waveform design is proposed where the information and power signals are superposed using the same frequency and time resources. The power signal is composed of a high peak modulated rectangular wave sent during the cyclic prefix of the orthogonal frequency-division multiplexing (CP-OFDM) system, which is discarded at the information receiver, such that it does not interfere with the OFDM data symbol. Although the pulse is restricted to be within the cyclic prefix, there might be a small amount of interference caused by channel dispersion. Simulations and measurements show that a good choice of signal parameters can minimize interference on the information symbols and simultaneously provide good performance in terms of energy harvesting.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Kassab, Hussein ; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain la Neuve, Belgium
Rottenberg, François; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain la Neuve, Belgium
FEUILLEN, Thomas ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SPARC ; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain la Neuve, Belgium
Wiame, Charles; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain la Neuve, Belgium
Louveaux, Jérôme; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain la Neuve, Belgium
External co-authors :
yes
Language :
English
Title :
Superposition of rectangular power pulses and CP-OFDM signal for SWIPT
Publication date :
December 2022
Journal title :
EURASIP Journal on Wireless Communications and Networking
ISSN :
1687-1472
eISSN :
1687-1499
Publisher :
Springer Science and Business Media Deutschland GmbH
This work is supported by Université catholique de Louvain under the ARC SWIPT Project. Part of this work was published in [] and presented at the 2019 IEEE International Conference on Communications (ICC) in Shanghai, China.
Y. Zeng, B. Clerckx, R. Zhang, Communications and signals design for wireless power transmission. IEEE Trans. Commun. 65(5), 2264–2290 (2017) DOI: 10.1109/TCOMM.2017.2676103
B. Clerckx, E. Bayguzina, Waveform design for wireless power transfer. IEEE Trans. Signal Process. 64(23), 6313–6328 (2016) DOI: 10.1109/TSP.2016.2601284
L.R. Varshney, Transporting information and energy simultaneously, in Proceedings of the International Symposium on Information Theory (2008), pp. 1612–1616
H. Ju, R. Zhang, Throughput maximization in wireless powered communication networks. IEEE Trans. Wirel. Commun. 13(1), 418–428 (2014) DOI: 10.1109/TWC.2013.112513.130760
B. Clerckx, Z. Bayani Zawawi, K. Huang, Wirelessly powered backscatter communications: waveform design and SNR-energy tradeoff. IEEE Commun. Lett. 21(10), 2234–2237 (2017) DOI: 10.1109/LCOMM.2017.2716341
H. Lee et al., Resource allocation techniques for wireless powered communication networks with energy storage constraint. IEEE Trans. Wirel. Commun. 15(4), 2619–2628 (2016) DOI: 10.1109/TWC.2015.2506561
R. Zhang, C.K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013) DOI: 10.1109/TWC.2013.031813.120224
H. Son, B. Clerckx, Joint beamforming design for multi-user wireless information and power transfer. IEEE Trans. Wirel. Commun. 13(11), 6397–6409 (2014) DOI: 10.1109/TWC.2014.2349511
J. Xu, L. Liu, R. Zhang, Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Trans. Signal Process. 62(18), 4798–4810 (2014) DOI: 10.1109/TSP.2014.2340817
J. Park, B. Clerckx, Joint wireless information and energy transfer in a two-user MIMO interference channel. IEEE Trans. Wirel. Commun. 12(8), 4210–4221 (2013) DOI: 10.1109/TWC.2013.071913.130084
J. Park, B. Clerckx, Joint wireless information and energy transfer in a k-user MIMO interference channel. IEEE Trans. Wirel. Commun. 13(10), 5781–5796 (2014) DOI: 10.1109/TWC.2014.2341233
J. Park, B. Clerckx, Joint wireless information and energy transfer with reduced feedback in MIMO interference channels. IEEE J. Sel. Areas Commun. 33(8), 1563–1577 (2015)
A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7), 3622–3636 (2013) DOI: 10.1109/TWC.2013.062413.122042
Y. Huang, B. Clerckx, Joint wireless information and power transfer for an autonomous multiple-antenna relay system. IEEE Commun. Lett. 19(7), 1113–1116 (2015) DOI: 10.1109/LCOMM.2015.2428252
Y. Huang, B. Clerckx, Relaying strategies for wireless-powered MIMO relay networks. IEEE Trans. Wirel. Commun. 15(9), 6033–6047 (2016) DOI: 10.1109/TWC.2016.2577581
K. Huang, E.G. Larsson, Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013) DOI: 10.1109/TSP.2013.2281026
X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 13(4), 2282–2294 (2014) DOI: 10.1109/TWC.2014.030514.131479
D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (2013) DOI: 10.1109/TWC.2013.103113.130470
X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61(11), 4754–4767 (2013) DOI: 10.1109/TCOMM.2013.13.120855
K. Huang, E.G. Larsson, Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013) DOI: 10.1109/TSP.2013.2281026
M. Varasteh, B. Rassouli, B. Clerckx, Wireless information and power transfer over an AWGN channel: nonlinearity and asymmetric Gaussian signaling, in Proceedings of the IEEE Information (2017). arXiv:1705.06350
M. Varasteh, E. Piovano, B. Clerckx, A learning approach to wireless information and power transfer signal and system design, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 4534–4538
J. Kim, B. Clerckx, P.D. Mitcheson, Prototyping and experimentation of a closed-loop wireless power transmission with channel acquisition and waveform optimization, in Proceedings of the IEEE Wireless Power Transfer Conference (WPTC) (2017)
J. Kim, B. Clerckx, P.D. Mitcheson, Experimental analysis of harvested energy and throughput trade-off in a realistic SWIPT system, in 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK (2019), pp. 1–5
T. Perera, D. Jayakody, S. Sharma, S. Chatzinotas, J. Li, Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun. Surv. Tutor. 20(1), 264–302 (2017) DOI: 10.1109/COMST.2017.2783901
B. Clerckx, R. Zhang, R. Schober, D.W.K. Ng, D.I. Kim, H.V. Poor, Fundamentals of wireless information and power transfer: from RF energy harvester models to signal and system designs. IEEE J. Sel. Areas Commun. 37(2), 1–30 (2019) DOI: 10.1109/JSAC.2018.2872371
K. Huang, C. Zhong, G. Zhu, Some new research trends in wirelessly powered communications. IEEE Wirel. Commun. 23(2), 19–27 (2016) DOI: 10.1109/MWC.2016.7462481
X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2015) DOI: 10.1109/COMST.2014.2368999
N. Pan, M. Rajabi, N.B. Carvalho, Bandwidth analysis of RF-DC converters under multisine excitation. IEEE Trans. Microw. Theory Technol. 66(2), 791–802 (2018) DOI: 10.1109/TMTT.2017.2757473
C.R. Valenta, M.M. Morys, G.D. Durgin, Theoretical energy-conversion efficiency for energy-harvesting circuits under power optimized waveform excitation. IEEE Trans. Microw. Theory Technol. 63(5), 1758–1767 (2015) DOI: 10.1109/TMTT.2015.2417174
A. Collado, A. Georgiadis, Optimal waveforms for efficient wireless power transmission. IEEE Microw. Wirel. Compon. Lett. 24(5), 354–356 (2014) DOI: 10.1109/LMWC.2014.2309074
D.I. Kim, J.H. Moon, J.J. Park, New SWIPT using PAPR: how it works. IEEE Wirel. Commun. Lett. 5(6), 672–675 (2016) DOI: 10.1109/LWC.2016.2614665
M. Maso, S. Lakshminarayana, T.Q.S. Quek, H.V. Poor, A composite approach to self-sustainable transmissions: rethinking OFDM. IEEE Trans. Commun. 62(11), 3904–3917 (2014) DOI: 10.1109/TCOMM.2014.2361124
B. Li, W. Xu, S. Li, J. Lin, Energy efficient power allocation in OFDM-based CRNs with cyclic prefix power transfer, in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK (2015), pp. 1–5
R.F. Buckley, R.W. Heath, Selective OFDM transmission for simultaneous wireless information and power transfer, in2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA (2019), pp. 1–6
H. Kassab, J. Louveaux, Gabor expansion for simultaneous wireless power and information transfer (SWIPT): interference analysis, in Proceedings of the 39th Symposium on Information Theory and Signal Proceedings in Benelux (2018), pp. 847–862
B. Clerckx, Wireless information and power transfer: nonlinearity, waveform design, and rate-energy tradeoff. IEEE Trans. Signal Process. 66(4), 847–862 (2018) DOI: 10.1109/TSP.2017.2775593
I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D.W.K. Ng, R. Schober, Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014) DOI: 10.1109/MCOM.2014.6957150
H. Kassab, J. Louveaux, Simultaneous wireless information and power transfer using rectangular pulse and CP-OFDM, in 2019 IEEE International Conference on Communications (ICC), Shanghai, China (2019), pp. 1–6
Rules and regulations of Federal Communication Commission (FCC), codified in Title 47 of the Code of Federal Regulations (CFR), Part 15
P. Kyosti et al., Part 1: Channel Models, WINNER II Project D1.1.2 V1.1, version 1.1 (2007)
P. Moose, A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun. 42(10), 2908–2914 (1994) DOI: 10.1109/26.328961