Pas de texte intégral
Communication publiée sur un site web (Colloques, congrès, conférences scientifiques et actes)
Deep generative models as an adversarial attack strategy for tabular machine learning
DYRMISHI, Salijona; Cătălina Stoian, Mihaela; Giunchiglia, Eleonora et al.
2024International Conference on Machine Learning and Cybernetics
Peer reviewed
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Computer Science - Learning; Computer Science - Artificial Intelligence
Résumé :
[en] Deep Generative Models (DGMs) have found application in computer vision for generating adversarial examples to test the robustness of machine learning (ML) systems. Extending these adversarial techniques to tabular ML presents unique challenges due to the distinct nature of tabular data and the necessity to preserve domain constraints in adversarial examples. In this paper, we adapt four popular tabular DGMs into adversarial DGMs (AdvDGMs) and evaluate their effectiveness in generating realistic adversarial examples that conform to domain constraints.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Other
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DYRMISHI, Salijona ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Cătălina Stoian, Mihaela
Giunchiglia, Eleonora
Cordy, Maxime
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Deep generative models as an adversarial attack strategy for tabular machine learning
Date de publication/diffusion :
2024
Nom de la manifestation :
International Conference on Machine Learning and Cybernetics
Date de la manifestation :
2024
Manifestation à portée :
International
Peer reviewed :
Peer reviewed
Projet FnR :
FNR14585105 - Search-based Adversarial Testing Under Domain-specific Constraints, 2020 (01/10/2020-30/09/2024) - Salijona Dyrmishi
Commentaire :
Accepted at ICMLC 2024 (International Conference on Machine Learning and Cybernetics)
Disponible sur ORBilu :
depuis le 05 novembre 2024

Statistiques


Nombre de vues
60 (dont 4 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu