Business data sharing; Data exchange; Data marketplaces; Data markets; Research agenda; STOF model; Systematic literature review
Abstract :
[en] Data marketplaces are expected to play a crucial role in tomorrow’s data economy, but such marketplaces are seldom commercially viable. Currently, there is no clear understanding of the knowledge gaps in data marketplace research, especially not of neglected research topics that may advance such marketplaces toward commercialization. This study provides an overview of the state-of-the-art of data marketplace research. We employ a Systematic Literature Review (SLR) approach to examine 133 academic articles and structure our analysis using the Service-Technology-Organization-Finance (STOF) model. We find that the extant data marketplace literature is primarily dominated by technical research, such as discussions about computational pricing and architecture. To move past the first stage of the platform’s lifecycle (i.e., platform design) to the second stage (i.e., platform adoption), we call for empirical research in non-technological areas, such as customer expected value and market segmentation.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
Precision for document type :
Review article
Disciplines :
Management information systems Computer science
Author, co-author :
ABBAS, Antragama Ewa ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX ; Faculty of Technology, Policy and Management, Delft University of Technology, Delft, Netherlands
Agahari, Wirawan ; Faculty of Technology, Policy and Management, Delft University of Technology, Delft, Netherlands
van de Ven, Montijn ; Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Eindhoven, Netherlands
Zuiderwijk, Anneke; Faculty of Technology, Policy and Management, Delft University of Technology, Delft, Netherlands
de Reuver, Mark; Faculty of Technology, Policy and Management, Delft University of Technology, Delft, Netherlands
External co-authors :
yes
Language :
English
Title :
Business data sharing through data marketplaces: A systematic literature review
Publication date :
December 2021
Journal title :
Journal of Theoretical and Applied Electronic Commerce Research
The European Union’s Horizon 2020 Research and Innovation Programme
Funding text :
Funding: The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no 871481–Trusted Secure Data Sharing Space (TRUSTS) and No 825225–Safe Data-Enabled Economic Development (Safe-DEED).
European Commission. A European Strategy for Data. 2020. Available online: https://digital-strategy.ec.europa.eu/en/policies/strategy-data (accessed on 17 November 2021).
Fruhwirth, M.; Rachinger, M.; Prlja, E. Discovering Business Models of Data Marketplaces. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020; pp. 5738–5747.
Spiekermann, M. Data Marketplaces: Trends and Monetisation of Data Goods. Intereconomics 2019, 54, 208–216. [CrossRef]
Virkar, S.; Viale Pereira, G.; Vignoli, M. Investigating the Social, Political, Economic and Cultural Implications of Data Trading; Springer International Publishing: Cham, Switzerland, 2019; pp. 215–229.
Thomas, L.; Leiponen, A. Big data commercialization. IEEE Eng. Manag. Rev. 2016, 44, 74–90. [CrossRef]
Van de Ven, M.; Abbas, A.E.; Kwee, Z.; de Reuver, M. Creating a Taxonomy of Business Models for Data Marketplaces. In Proceedings of the 34th Bled eConference-Digital Support from Crisis to Progressive Change, Online, 27–30 June 2021; pp. 313–325.
Okoli, C. A guide to conducting a standalone systematic literature review. Commun. Assoc. Inf. Syst. 2015, 37, 879–910. [CrossRef]
Solaimani, S.; Keijzer-Broers, W.; Bouwman, H. What we do–and don’t–know about the Smart Home: An analysis of the Smart Home literature. Indoor Built Environ. 2015, 24, 370–383. [CrossRef]
Champieux, R. PlumX. J. Med. Libr. Assoc. JMLA 2015, 103, 63–64. [CrossRef]
Wouters, P.; Zahedi, Z.; Costas, R. Social media metrics for new research evaluation. In Springer Handbook of Science and Technology Indicators; Springer: Cham, Switzerland, 2019; pp. 687–713.
Bouwman, H.; Faber, E.; Haaker, T.; Kijl, B.; De Reuver, M. Conceptualizing the STOF Model; Springer: Berlin/Heidelberg, Germany, 2008; pp. 31–70.
Osterwalder, A.; Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers; John Wiley & Sons: Hoboken, NJ, USA, 2010.
Munoz-Arcentales, A.; López-Pernas, S.; Pozo, A.; Alonso, Á.; Salvachúa, J.; Huecas, G. An Architecture for Providing Data Usage and Access Control in Data Sharing Ecosystems. Procedia Comput. Sci. 2019, 160, 590–597. [CrossRef]
Demchenko, Y.; Los, W.; de Laat, C. Data as economic goods: Definitions, properties, challenges, enabling technologies for future data markets. ITU J. ICT Discov. 2018, 1, 1–10.
Zhang, R.; Indulska, M.; Sadiq, S. Discovering Data Quality Problems. Bus. Inf. Syst. Eng. 2019, 61, 575–593. [CrossRef]
Schomakers, E.-M.; Lidynia, C.; Ziefle, M. All of me? Users’ preferences for privacy-preserving data markets and the importance of anonymity. Electron. Mark. 2020, 30, 649–665. [CrossRef]
Kamleitner, B.; Mitchell, V.-W. Can consumers experience ownership for their personal data? From issues of scope and invisibility to agents handling our digital blueprints. In Psychological Ownership and Consumer Behavior; Springer: Cham, Switzerland, 2018; pp. 91–118.
Spiekermann, S.; Korunovska, J. Towards a value theory for personal data. J. Inf. Technol. 2017, 32, 62–84. [CrossRef]
Perera, C.; Wakenshaw, S.Y.; Baarslag, T.; Haddadi, H.; Bandara, A.K.; Mortier, R.; Crabtree, A.; Ng, I.C.; McAuley, D.; Crowcroft, J. Valorising the IoT databox: Creating value for everyone. Trans. Emerg. Telecommun. Technol. 2017, 28, 1–17. [CrossRef]
Anderson, N.G.; Pollack, J.; Williams, D. The value of healthcare data in ophthalmology. Curr. Opin. Ophthalmol. 2014, 25, 191–194. [CrossRef] [PubMed]
Robinson, S.C. What’s your anonymity worth? Establishing a marketplace for the valuation and control of individuals’ anonymity and personal data. Digit. Policy Regul. Gov. 2017, 19, 353–366. [CrossRef]
Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A.; et al. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665–5690. [CrossRef] [PubMed]
Attard, J.; Orlandi, F.; Auer, S. Data value networks: Enabling a new data ecosystem. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Omaha, NE, USA, 13–16 October 2016; pp. 453–456.
Attard, J.; Orlandi, F.; Auer, S. Exploiting the value of data through data value networks. In Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance, New Delhi, India, 7–9 March 2017; pp. 475–484.
Hutchings, A.; Holt, T.J. A Crime Script Analysis of the Online Stolen Data Market: Table 1. Br. J. Criminol. 2015, 55, 596–614. [CrossRef]
Chen, Y.; Guo, J.; Li, C.; Ren, W. FaDe: A Blockchain-Based Fair Data Exchange Scheme for Big Data Sharing. Future Internet 2019, 11, 225. [CrossRef]
Lawrenz, S.; Sharma, P.; Rausch, A. Blockchain Technology as an Approach for Data Marketplaces. In Proceedings of the 2019 International Conference on Blockchain Technology, Honolulu, HI, USA, 15–18 March 2019; pp. 55–59.
Jeong, B.-G.; Youn, T.-Y.; Jho, N.-S.; Shin, S.U. Blockchain-Based Data Sharing and Trading Model for the Connected Car. Sensors 2020, 20, 3141. [CrossRef]
López, D.; Farooq, B. A multi-layered blockchain framework for smart mobility data-markets. Transp. Res. Part C Emerg. Technol. 2020, 111, 588–615. [CrossRef]
Ha, M.; Kwon, S.; Lee, Y.J.; Shim, Y.; Kim, J. Where WTS meets WTB: A Blockchain-based Marketplace for Digital Me to trade users’ private data. Pervasive Mob. Comput. 2019, 59, 1–15. [CrossRef]
Özyilmaz, K.R.; Doğan, M.; Yurdakul, A. IDMoB: IoT data marketplace on blockchain. In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018; pp. 11–19.
Park, J.-S.; Youn, T.-Y.; Kim, H.-B.; Rhee, K.-H.; Shin, S.-U. Smart Contract-Based Review System for an IoT Data Marketplace. Sensors 2018, 18, 3577. [CrossRef]
De la Vega, F.; Soriano, J.; Jimenez, M.; Lizcano, D. A Peer-to-Peer Architecture for Distributed Data Monetization in Fog Computing Scenarios. Wirel. Commun. Mob. Comput. 2018, 2018, 5758741. [CrossRef]
Wörner, D. Design of a Real-Time Data Market Based on the 21 Bitcoin Computer; Springer International Publishing: Cham, Switzerland, 2016; pp. 228–232.
Ramachandran, G.S.; Radhakrishnan, R.; Krishnamachari, B. Towards a Decentralized Data Marketplace for Smart Cities. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018.
Huang, K.; Zhang, X.; Mu, Y.; Rezaeibagha, F.; Wang, X.; Li, J.; Xia, Q.; Qin, J. EVA: Efficient Versatile Auditing Scheme for IoT-Based Datamarket in Jointcloud. IEEE Internet Things J. 2020, 7, 882–892. [CrossRef]
Roman, D.; Stefano, G. Towards a Reference Architecture for Trusted Data Marketplaces: The Credit Scoring Perspective. In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 95–101.
Nasonov, D.; Visheratin, A.A.; Boukhanovsky, A. Blockchain-Based Transaction Integrity in Distributed Big Data Marketplace; Springer International Publishing: Cham, Switzerland, 2018; pp. 569–577.
Masseport, S.; Lartigau, J.; Darties, B.; Giroudeau, R. Proof of usage: User-centric consensus for data provision and exchange. Ann. Telecommun. 2020, 75, 153–162. [CrossRef]
Matzutt, R.; Müllmann, D.; Zeissig, E.-M.; Horst, C.; Kasugai, K.; Lidynia, S.; Wieninger, S.; Ziegeldorf, J.H.; Gudergan, G.; Wehrle, K. myneData: Towards a trusted and user-controlled ecosystem for sharing personal data. Informatik 2017, P275, 1073–1084. [CrossRef]
Mišura, K.; Žagar, M. Data marketplace for Internet of Things. In Proceedings of the 2016 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 12–14 October 2016; pp. 255–260.
Sánchez, L.; Lanza, J.; Santana, J.; Agarwal, R.; Raverdy, P.; Elsaleh, T.; Fathy, Y.; Jeong, S.; Dadoukis, A.; Korakis, T.; et al. Federation of Internet of Things Testbeds for the Realization of a Semantically-Enabled Multi-Domain Data Marketplace. Sensors 2018, 18, 3375. [CrossRef]
Pillmann, J.; Wietfeld, C.; Zarcula, A.; Raugust, T.; Alonso, D.C. Novel common vehicle information model (CVIM) for future automotive vehicle big data marketplaces. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1910–1915.
Li, Y.; Sun, H.; Dong, B. Cost-efficient data acquisition on online data marketplaces for correlation analysis. Proc. VLDB Endow 2018, 12, 362–375. [CrossRef]
Ren, X.; London, P.; Ziani, J.; Wierman, A. Datum: Managing Data Purchasing and Data Placement in a Geo-Distributed Data Market. IEEE ACM Trans. Netw. 2018, 26, 893–905. [CrossRef]
Fricker, S.A.; Maksimov, Y.V. Pricing of data products in data marketplaces. In Proceedings of the International Conference of Software Business, Tallinn, Estonia, 11–12 June 2017; pp. 49–66.
Agarwal, A.; Dahleh, M.; Sarkar, T. A marketplace for data: An algorithmic solution. In Proceedings of the 2019 ACM Conference on Economics and Computation, Phoenix, AZ, USA, 24–28 June 2019; pp. 701–726.
Niyato, D.; Alsheikh, M.A.; Wang, P.; Kim, D.I.; Han, Z. Market model and optimal pricing scheme of big data and Internet of Things (IoT). In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6.
Liu, K.; Qiu, X.; Chen, W.; Chen, X.; Zheng, Z. Optimal Pricing Mechanism for Data Market in Blockchain-Enhanced Internet of Things. IEEE Internet Things J. 2019, 6, 9748–9761. [CrossRef]
Koutris, P.; Upadhyaya, P.; Balazinska, M.; Howe, B.; Suciu, D. Query-Based Data Pricing. J. ACM 2015, 62, 1–44. [CrossRef]
Koutris, P.; Upadhyaya, P.; Balazinska, M.; Howe, B.; Suciu, D. Toward practical query pricing with QueryMarket. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013; pp. 613–624.
Niu, C.; Zheng, Z.; Wu, F.; Tang, S.; Chen, G. Online Pricing with Reserve Price Constraint for Personal Data Markets. IEEE Trans. Knowl. Data Eng. 2020. [CrossRef]
Niu, C.; Zheng, Z.; Tang, S.; Gao, X.; Wu, F. Making Big Money from Small Sensors: Trading Time-Series Data under Pufferfish Privacy. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019.
Zheng, Z.; Peng, Y.; Wu, F.; Tang, S.; Chen, G. ARETE: On Designing Joint Online Pricing and Reward Sharing Mechanisms for Mobile Data Markets. IEEE Trans. Mob. Comput. 2020, 19, 769–787. [CrossRef]
Zheng, Z.; Peng, Y.; Wu, F.; Tang, S.; Chen, G. An online pricing mechanism for mobile crowdsensing data markets. In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Chennai, India, 10–14 July 2017; pp. 1–10.
Liu, Z.; Hacigümüs, H. Online Optimization and Fair Costing for Dynamic Data Sharing in a Cloud Data Market. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 1359–1370.
Sakr, M. A data model and algorithms for a spatial data marketplace. Int. J. Geogr. Inf. Sci. 2018, 32, 2140–2168. [CrossRef]
Wang, X.; Wei, X.; Liu, Y.; Gao, S. On pricing approximate queries. Inf. Sci. 2018, 453, 198–215. [CrossRef]
Upadhyaya, P.; Balazinska, M.; Suciu, D. Price-optimal querying with data APIs. Proc. VLDB Endow. 2016, 9, 1695–1706. [CrossRef]
Tang, R.; Wu, H.; Bao, Z.; Bressan, S.; Valduriez, P. The Price Is Right; Springer: Berlin/Heidelberg, Germany, 2013; pp. 380–394.
Wang, X.; Wei, X.; Gao, S.; Liu, Y.; Li, Z. A novel auction-based query pricing schema. Int. J. Parallel Program. 2019, 47, 759–780. [CrossRef]
Yu, H.; Zhang, M. Data pricing strategy based on data quality. Comput. Ind. Eng. 2017, 112, 1–10. [CrossRef]
Stahl, F.; Vossen, G. Name your own price on data marketplaces. Informatica 2017, 28, 155–180. [CrossRef]
Stahl, F.; Vossen, G. Fair Knapsack Pricing for Data Marketplaces; Springer International Publishing: Cham, Switzerland, 2016; pp. 46–59.
Tang, R.; Shao, D.; Bressan, S.; Valduriez, P. What You Pay for Is What You Get; Springer: Berlin/Heidelberg, Germany, 2013; pp. 395–409.
Tang, R.; Amarilli, A.; Senellart, P.; Bressan, S. A Framework for Sampling-Based XML Data Pricing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 116–138.
Tang, R.; Amarilli, A.; Senellart, P.; Bressan, S. Get a Sample for a Discount; Springer International Publishing: Cham, Switzerland, 2014; pp. 20–34.
Cao, X.; Chen, Y.; Liu, K.R. An iterative auction mechanism for data trading. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 5850–5854.
Cao, X.; Chen, Y.; Liu, K.J.R. Data Trading With Multiple Owners, Collectors, and Users: An Iterative Auction Mechanism. IEEE Trans. Signal Inf. Process. Over Netw. 2017, 3, 268–281. [CrossRef]
Zheng, Z.; Peng, Y.; Wu, F.; Tang, S.; Chen, G. Trading Data in the Crowd: Profit-Driven Data Acquisition for Mobile Crowdsensing. IEEE J. Sel. Areas Commun. 2017, 35, 486–501. [CrossRef]
Zeng, Y.; Ohsawa, Y. Re-discover Values of Data Using Data Jackets by Combining Cluster with Text Analysis. Procedia Comput. Sci. 2017, 112, 2195–2203. [CrossRef]
Oh, H.; Park, S.; Lee, G.M.; Choi, J.K.; Noh, S. Competitive Data Trading Model With Privacy Valuation for Multiple Stakeholders in IoT Data Markets. IEEE Internet Things J. 2020, 7, 3623–3639. [CrossRef]
Oh, H.; Park, S.; Lee, G.M.; Heo, H.; Choi, J.K. Personal Data Trading Scheme for Data Brokers in IoT Data Marketplaces. IEEE Access 2019, 7, 40120–40132. [CrossRef]
Hu, J.; Yang, K.; Wang, K.; Zhang, K. A Blockchain-Based Reward Mechanism for Mobile Crowdsensing. IEEE Trans. Comput. Soc. Syst. 2020, 7, 178–191. [CrossRef]
Liu, K.; Chen, W.; Zheng, Z.; Li, Z.; Liang, W. A Novel Debt-Credit Mechanism for Blockchain-Based Data-Trading in Internet of Vehicles. IEEE Internet Things J. 2019, 6, 9098–9111. [CrossRef]
Yang, J.; Zhao, C.; Xing, C. Big Data Market Optimization Pricing Model Based on Data Quality. Complexity 2019, 2019, 1–10. [CrossRef]
Vu, Q.H.; Pham, T.-V.; Truong, H.-L.; Dustdar, S.; Asal, R. Demods: A description model for data-as-a-service. In Proceedings of the 2012 IEEE 26th International Conference on Advanced Information Networking and Applications, Fukuoka, Japan, 26–29 March 2012; pp. 605–612.
Truong, H.-L.; Dustdar, S.; Gotze, J.; Fleuren, T.; Muller, P.; Tbahriti, S.-E.; Mrissa, M.; Ghedira, C. Exchanging data agreements in the daas model. In Proceedings of the 2011 IEEE Asia-Pacific Services Computing Conference, Jeju, Korea, 12–15 December 2011; pp. 153–160.
Truong, H.L.; Comerio, M.; Paoli, F.D.; Gangadharan, G.R.; Dustdar, S. Data contracts for cloud-based data marketplaces. Int. J. Comput. Sci. Eng. 2012, 7, 280. [CrossRef]
Truong, H.-L.; Gangadharan, G.; Comerio, M.; Dustdar, S.; De Paoli, F. On analyzing and developing data contracts in cloud-based data marketplaces. In Proceedings of the 2011 IEEE Asia-Pacific Services Computing Conference, Jeju, Korea, 12–15 December 2011; pp. 174–181.
Hatanaka, H.; Abe, A. What Type of Information and Scheme does the Data Market Need? Procedia Comput. Sci. 2015, 60, 1309–1317. [CrossRef]
De Virgilio, R.; Orsi, G.; Tanca, L.; Torlone, R. Semantic data markets: A flexible environment for knowledge management. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, Scotland, UK, 24–28 October 2011; pp. 1559–1564.
Morrison, N.; Hancock, D.; Hirschman, L.; Dawyndt, P.; Verslyppe, B.; Kyrpides, N.; Kottmann, R.; Yilmaz, P.; Glöckner, F.O.; Grethe, J.; et al. Data shopping in an open marketplace: Introducing the Ontogrator web application for marking up data using ontologies and browsing using facets. Stand. Genom. Sci. 2011, 4, 286–292. [CrossRef]
Wijnhoven, F.; Van Den Belt, E.; Verbruggen, E.; Van Der Vet, P. Internal data market services: An ontology-based architecture and its evaluation. Inf. Sci. 2003, 6, 259–271.
Chapman, A.; Simperl, E.; Koesten, L.; Konstantinidis, G.; Ibáñez, L.-D.; Kacprzak, E.; Groth, P. Dataset search: A survey. VLDB J. 2020, 29, 251–272. [CrossRef]
Rekatsinas, T.; Dong, X.L.; Getoor, L.; Srivastava, D. Finding Quality in Quantity: The Challenge of Discovering Valuable Sources for Integration. In Proceedings of the 7th Biennial Conference on Innovative Data Systems Research (CIDR’15), Asilomar, CA, USA, 4–7 January 2015.
Zhao, Y.; Yu, Y.; Li, Y.; Han, G.; Du, X. Machine learning based privacy-preserving fair data trading in big data market. Inf. Sci. 2019, 478, 449–460. [CrossRef]
Niu, C.; Zheng, Z.; Wu, F.; Gao, X.; Chen, G. Achieving Data Truthfulness and Privacy Preservation in Data Markets. IEEE Trans. Knowl. Data Eng. 2019, 31, 105–119. [CrossRef]
Niu, C.; Zheng, Z.; Wu, F.; Gao, X.; Chen, G. Trading Data in Good Faith: Integrating Truthfulness and Privacy Preservation in Data Markets. In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 223–226.
Perera, C.; Ranjan, R.; Wang, L. End-to-End Privacy for Open Big Data Markets. IEEE Cloud Comput. 2015, 2, 44–53. [CrossRef]
Kiayias, A.; Yener, B.; Yung, M. Privacy-Preserving Information Markets for Computing Statistical Data; Springer: Berlin/Heidelberg, Germany, 2009; pp. 32–50.
Sørlie, J.-T.; Altmann, J. Sensing as a Service Revisited: A Property Rights Enforcement and Pricing Model for IIoT Data Marketplaces. In Proceedings of the International Conference on the Economics of Grids, Clouds, Systems, and Services, Leeds, UK, 17–19 September 2019; pp. 127–139.
Shaabany, G.; Grimm, M.; Anderl, R. Secure Information Model for Data Marketplaces Enabling Global Distributed Manufacturing. Procedia CIRP 2016, 50, 360–365. [CrossRef]
Schomm, F.; Stahl, F.; Vossen, G. Marketplaces for data: An initial survey. ACM SIGMOD Rec. 2013, 42, 15–26. [CrossRef]
Stahl, F.; Schomm, F.; Vossen, G.; Vomfell, L. A classification framework for data marketplaces. Vietnam J. Comput. Sci. 2016, 3, 137–143. [CrossRef]
Oliveira, M.I.S.; Lóscio, B.F. What is a data ecosystem? In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, Delft, The Netherlands, 30 May–1 June 2018; pp. 1–9.
Oliveira, M.I.S.; Lima, G.D.F.B.; Lóscio, B.F. Investigations into Data Ecosystems: A systematic mapping study. Knowl. Inf. Syst. 2019, 61, 589–630. [CrossRef]
Hayashi, T.; Ohsawa, Y. Understanding the Structural Characteristics of Data Platforms Using Metadata and a Network Approach. IEEE Access 2020, 8, 35469–35481. [CrossRef]
Holt, T.J.; Lampke, E. Exploring stolen data markets online: Products and market forces. Crim. Justice Stud. 2010, 23, 33–50. [CrossRef]
Smirnova, O.; Holt, T.J. Examining the Geographic Distribution of Victim Nations in Stolen Data Markets. Am. Behav. Sci. 2017, 61, 1403–1426. [CrossRef]
Macdonald, M.; Frank, R. Shuffle Up and Deal: Use of a Capture–Recapture Method to Estimate the Size of Stolen Data Markets. Am. Behav. Sci. 2017, 61, 1313–1340. [CrossRef]
Macdonald, M.; Frank, R. The network structure of malware development, deployment and distribution. Glob. Crime 2017, 18, 49–69. [CrossRef]
Bevir, M. Governance: A Very Short Introduction; Oxford University Press: Oxford, UK, 2012.
Tupasela, A.; Snell, K.; Tarkkala, H. The Nordic data imaginary. Big Data Soc. 2020, 7, 1–13. [CrossRef]
Yu, X.; Zhao, Y. Dualism in data protection: Balancing the right to personal data and the data property right. Comput. Law Secur. Rev. 2019, 35, 1–11. [CrossRef]
Odabaş, M.; Holt, T.J.; Breiger, R.L. Markets as Governance Environments for Organizations at the Edge of Illegality: Insights From Social Network Analysis. Am. Behav. Sci. 2017, 61, 1267–1288. [CrossRef]
Holt, T.J. Exploring the social organisation and structure of stolen data markets. Glob. Crime 2013, 14, 155–174. [CrossRef]
Yip, M.; Shadbolt, N.; Webber, C. Why forums? An empirical analysis into the facilitating factors of carding forums. In Proceedings of the 5th Annual ACM Web Science Conference, Paris, France, 2–4 May 2013; pp. 453–462.
Hutchings, A.; Holt, T.J. The online stolen data market: Disruption and intervention approaches. Glob. Crime 2017, 18, 11–30. [CrossRef]
Thimmesch, A.B. Transacting in Data: Tax, Privacy, and the New Economy. SSRN Electron. J. 2016, 94, 145–194. [CrossRef]
Henshall, S. The COMsumer Manifesto: Empowering communities of consumers through the Internet. First Monday 2000, 5. [CrossRef]
Agahari, W. Platformization of data sharing: Multi-party computation (MPC) as control mechanism and its effect on firms’ participation in data sharing via data marketplaces. In Proceedings of the 33rd Bled eConference: Enabling Technology for a Sustainable Society, Bled, Slovenia, 28 June 2020; pp. 691–704.
Otto, B.; Jarke, M. Designing a multi-sided data platform: Findings from the International Data Spaces case. Electron. Mark. 2019, 29, 561–580. [CrossRef]
Richter, H.; Slowinski, P.R. The Data Sharing Economy: On the Emergence of New Intermediaries. IIC Int. Rev. Intellect. Prop. Compet. Law 2019, 50, 4–29. [CrossRef]
Spiekermann, S.; Novotny, A. A vision for global privacy bridges: Technical and legal measures for international data markets. Comput. Law Secur. Rev. 2015, 31, 181–200. [CrossRef]
Ahmed, E.; Shabani, M. DNA Data Marketplace: An Analysis of the Ethical Concerns Regarding the Participation of the Individuals. Front. Genet. 2019, 10, 1–6. [CrossRef]
Van Dijck, J.; Poell, T. Understanding the promises and premises of online health platforms. Big Data Soc. 2016, 3, 1–11. [CrossRef]
Ishmaev, G. The Ethical Limits of Blockchain-Enabled Markets for Private IoT Data. Philos. Technol. 2020, 33, 411–432. [CrossRef]
Charitsis, V.; Zwick, D.; Bradshaw, A. Creating Worlds that Create Audiences: Theorising Personal Data Markets in the Age of Communicative Capitalism. tripleC Commun. Capital. Crit. Open Access J. Glob. Sustain. Inf. Soc. 2018, 16, 820–834. [CrossRef]
Elvy, S.-A. Paying for privacy and the personal data economy. Columbia Law Rev. 2017, 117, 1369–1460.
Spiekermann, S.; Acquisti, A.; Böhme, R.; Hui, K.-L. The challenges of personal data markets and privacy. Electron. Mark. 2015, 25, 161–167. [CrossRef]
Guijarro, L.; Pla, V.; Vidal, J.R.; Naldi, M. Competition in data-based service provision: Nash equilibrium characterization. Future Gener. Comput. Syst. 2019, 96, 35–50. [CrossRef]
Holt, T.J.; Smirnova, O.; Chua, Y.T. Exploring and Estimating the Revenues and Profits of Participants in Stolen Data Markets. Deviant Behav. 2016, 37, 353–367. [CrossRef]
Shulman, A. The underground credentials market. Comput. Fraud Secur. 2010, 2010, 5–8. [CrossRef]
Soley, A.M.; Siegel, J.E.; Suo, D.; Sarma, S.E. Value in vehicles: Economic assessment of automotive data. Digit. Policy Regul. Gov. 2018, 20, 513–527. [CrossRef]
Tian, L.; Li, J.; Li, W.; Ramesh, B.; Cai, Z. Optimal Contract-Based Mechanisms for Online Data Trading Markets. IEEE Internet Things J. 2019, 6, 7800–7810. [CrossRef]
Mao, W.; Zheng, Z.; Wu, F. Pricing for Revenue Maximization in IoT Data Markets: An Information Design Perspective. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 1837–1845.
Shen, B.; Shen, Y.; Ji, W. Profit optimization in service-oriented data market: A Stackelberg game approach. Future Gener. Comput. Syst. 2019, 95, 17–25. [CrossRef]
Niu, C.; Zheng, Z.; Wu, F.; Tang, S.; Gao, X.; Chen, G. Unlocking the value of privacy: Trading aggregate statistics over private correlated data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2031–2040.
Parra-Arnau, J. Optimized, direct sale of privacy in personal data marketplaces. Inf. Sci. 2018, 424, 354–384. [CrossRef]
Yuncheng, S.; Bing, G.; Yan, S.; Xuliang, D.; Xiangqian, D.; Hong, Z. A pricing model for Big Personal Data. Tsinghua Sci. Technol. 2016, 21, 482–490. [CrossRef]
Li, C.; Li, D.Y.; Miklau, G.; Suciu, D. A theory of pricing private data. ACM Trans. Database Syst. TODS 2014, 39, 1–28. [CrossRef]
Li, C.; Li, D.Y.; Miklau, G.; Suciu, D. A theory of pricing private data. In Proceedings of the 16th International Conference on Database Theory, Genoa, Italy, 18–22 March 2013; pp. 33–44.
Hayashi, T.; Ohsawa, Y. Preliminary Case Study on Value Determination of Datasets and Cross-disciplinary Data Collaboration Using Data Jackets. Procedia Comput. Sci. 2017, 112, 2175–2184. [CrossRef]
Muschalle, A.; Stahl, F.; Löser, A.; Vossen, G. Pricing approaches for data markets. In Proceedings of the International Workshop on Business Intelligence for the Real-Time Enterprise, Istanbul, Turkey, 27 August 2012; pp. 129–144.
Balazinska, M.; Howe, B.; Suciu, D. Data markets in the cloud: An opportunity for the database community. Proc. VLDB Endow. 2011, 4, 1482–1485. [CrossRef]
Liang, F.; Yu, W.; An, D.; Yang, Q.; Fu, X.; Zhao, W. A Survey on Big Data Market: Pricing, Trading and Protection. IEEE Access 2018, 6, 15132–15154. [CrossRef]
Jiao, Y.; Wang, P.; Feng, S.; Niyato, D. Profit Maximization Mechanism and Data Management for Data Analytics Services. IEEE Internet Things J. 2018, 5, 2001–2014. [CrossRef]
Jiao, Y.; Wang, P.; Niyato, D.; Alsheikh, M.A.; Feng, S. Profit maximization auction and data management in big data markets. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6.
Yassine, A.; Nazari Shirehjini, A.A.; Shirmohammadi, S. Smart Meters Big Data: Game Theoretic Model for Fair Data Sharing in Deregulated Smart Grids. IEEE Access 2015, 3, 2743–2754. [CrossRef]
Jiang, C.; Gao, L.; Duan, L.; Huang, J. Economics of peer-to-peer mobile crowdsensing. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.
Stahl, F.; Vossen, G. Data Quality Scores for Pricing on Data Marketplaces; Springer: Berlin/Heidelberg, Germany, 2016; pp. 215–224.
Jang, B.; Park, S.; Lee, J.; Hahn, S.-G. Three Hierarchical Levels of Big-Data Market Model Over Multiple Data Sources for Internet of Things. IEEE Access 2018, 6, 31269–31280. [CrossRef]
Henfridsson, O.; Bygstad, B. The generative mechanisms of digital infrastructure evolution. MIS Q. 2013, 37, 907–931. [CrossRef]
Abbas, A.E. Designing Data Governance Mechanisms for Data Marketplace Meta-Platforms. In Proceedings of the 34th Bled eConference–Digital Support from Crisis to Progressive Change, Online, 27–30 June 2021; pp. 695–707.
Mucha, T.; Seppala, T. Artificial Intelligence Platforms—A New Research Agenda for Digital Platform Economy. SSRN Electron. J. 2020. [CrossRef]
De Reuver, M.; Sørensen, C.; Basole, R.C. The digital platform: A research agenda. J. Inf. Technol. 2018, 33, 124–135. [CrossRef]
Van Angeren, J.; Alves, C.; Jansen, S. Can we ask you to collaborate? Analyzing app developer relationships in commercial platform ecosystems. J. Syst. Softw. 2016, 113, 430–445. [CrossRef]
Gawer, A. Bridging differing perspectives on technological platforms: Toward an integrative framework. Res. Policy 2014, 43, 1239–1249. [CrossRef]
Gebregiorgis, S.A.; Altmann, J. IT service platforms: Their value creation model and the impact of their level of openness on their adoption. Procedia Comput. Sci. 2015, 68, 173–187. [CrossRef]
Ondrus, J.; Gannamaneni, A.; Lyytinen, K. The impact of openness on the market potential of multi-sided platforms: A case study of mobile payment platforms. J. Inf. Technol. 2015, 30, 260–275. [CrossRef]
Wessel, M.; Thies, F.; Benlian, A. Opening the floodgates: The implications of increasing platform openness in crowdfunding. J. Inf. Technol. 2017, 32, 344–360. [CrossRef]
Porter, M.E. The value chain and competitive advantage. Underst. Bus. Process. 2001, 2, 50–66.
De Reuver, M.; Bouwman, H.; Haaker, T. Business model roadmapping: A practical approach to come from an existing to a desired business model. Int. J. Innov. Manag. 2013, 17, 1–18. [CrossRef]
Hevner, A.; Chatterjee, S. Design science research in information systems. In Design Research in Information Systems; Springer: Boston, MA, USA, 2010; pp. 9–22.
Hevner, A.R. A three cycle view of design science research. Scand. J. Inf. Syst. 2007, 19, 1–6.
Sekaran, U.; Bougie, R. Research Methods for Business: A Skill Building Approach; John Wiley & Sons: Hoboken, NJ, USA, 2016.