Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
CycleGAN-Based Data Augmentation for Enhanced Remaining Useful Life Prediction under Unsupervised Domain Adaptation
JOUBAUD, Dorian; ZOTOV, Evgeny; BEKTASH, Oghuz et al.
2024Annual Conference of the PhM Society
Peer reviewed
 

Documents


Texte intégral
3898-Document Upload-15404-1-9-20241012 (1).pdf
Preprint Auteur (755.28 kB) Licence Creative Commons - Attribution, Partage dans les Mêmes Conditions
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Data augmentation; unsupervised domain adaptation; RUL prediction; time series; CycleGAN; Domain adaptation
Résumé :
[en] Predictive maintenance is crucial for enhancing operational efficiency and reducing costs in Prognostics and Health Management (PHM). One of the key tasks in predictive maintenance is the estimation of Remaining Useful Life (RUL) of machinery. In practice, the data for different machines is not always accessible in sufficient quantity or quality, therefore the machine learning models trained on machines in one domain often perform poorly when applied to other domains due to covariate shifts. As a solution, Domain Adaptation (DA) aims to tackle domain shifts by extracting domain-invariant features. However, traditional methods often fail to adequately address the complexity and variability of real-world data. We propose to address this challenge, using a Wasserstein CycleGAN with Gradient Penalty (W-CycleGAN-GP) to learn mappings between domains and generate augmented data in the target domain from data in the source domain. We use our approach to generate realistic augmented data that bridge domain gap coupled with recent work on adversarialbased and correlation alignment-based DA models to improve the performance of RUL prediction models in target domains without having access to labeled data. The experimental results on the C-MAPSS dataset demonstrate a significant improvement in the RUL prediction score and accuracy within the target domain.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SerVal - Security, Reasoning & Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
JOUBAUD, Dorian  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
ZOTOV, Evgeny ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
BEKTASH, Oghuz  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
KUBLER, Sylvain ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Yves LeTraon;  Unilu - Université du Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
CycleGAN-Based Data Augmentation for Enhanced Remaining Useful Life Prediction under Unsupervised Domain Adaptation
Date de publication/diffusion :
2024
Nom de la manifestation :
Annual Conference of the PhM Society
Date de la manifestation :
11/11/2024
Manifestation à portée :
International
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
16756339
Disponible sur ORBilu :
depuis le 04 novembre 2024

Statistiques


Nombre de vues
98 (dont 11 Unilu)
Nombre de téléchargements
242 (dont 12 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu