Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
On-Air Deep Learning Integrated Semantic Inference Models for Enhanced Earth Observation Satellite Networks
Chou, Hong-fu; Nguyen Ha, Vu; THIRUVASAGAM, Prabhu et al.
2024
 

Documents


Texte intégral
6GSemantic (1).pdf
Postprint Auteur (3.96 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Learning; Computer Science - Computer Vision and Pattern Recognition; Computer Science - Networking and Internet Architecture
Résumé :
[en] Earth Observation (EO) systems play a crucial role in achieving Sustainable Development Goals by collecting and analyzing vital global data through satellite networks. These systems are essential for tasks like mapping, disaster monitoring, and resource management, but they face challenges in processing and transmitting large volumes of EO data, especially in specialized fields such as agriculture and real-time disaster response. Domain-adapted Large Language Models (LLMs) provide a promising solution by facilitating data fusion between extensive EO data and semantic EO data. By improving integration and interpretation of diverse datasets, LLMs address the challenges of processing specialized information in agriculture and disaster response applications. This fusion enhances the accuracy and relevance of transmitted data. This paper presents a framework for semantic communication in EO satellite networks, aimed at improving data transmission efficiency and overall system performance through cognitive processing techniques. The proposed system employs Discrete-Task-Oriented Source-Channel Coding (DT-JSCC) and Semantic Data Augmentation (SA) to focus on relevant information while minimizing communication overhead. By integrating cognitive semantic processing and inter-satellite links, the framework enhances the analysis and transmission of multispectral satellite imagery, improving object detection, pattern recognition, and real-time decision-making. The introduction of Cognitive Semantic Augmentation (CSA) allows satellites to process and transmit semantic information, boosting adaptability to changing environments and application needs. This end-to-end architecture is tailored for next-generation satellite networks, such as those supporting 6G, and demonstrates significant improvements in efficiency and accuracy.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Chou, Hong-fu
Nguyen Ha, Vu
THIRUVASAGAM, Prabhu ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LE, Thanh-Dung  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
EAPPEN, Geoffrey ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Ti Nguyen, Ti
Garces-Socarras, Luis M.
Gonzalez-Rios, Jorge L.
Carlos Merlano-Duncan, Juan
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHOU, Hung-Pu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Langue du document :
Anglais
Titre :
On-Air Deep Learning Integrated Semantic Inference Models for Enhanced Earth Observation Satellite Networks
Date de publication/diffusion :
2024
Commentaire :
18 pages, 10 figures, magazine
Disponible sur ORBilu :
depuis le 04 novembre 2024

Statistiques


Nombre de vues
134 (dont 3 Unilu)
Nombre de téléchargements
113 (dont 5 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu