3-D position control; Internet of Things (IoT); node association; physical layer security (PLS); unmanned aerial vehicle (UAV); 3d position control; 3D positions; Aerial vehicle; Jamming; Node association; Physical layer security; Resource management; Security; Unmanned aerial vehicle; Wireless communications; Aerospace Engineering; Electrical and Electronic Engineering
Résumé :
[en] Security provisioning for low-complex and constrained devices in the Internet of Things (IoT) is exacerbating the concerns for the design of future wireless networks. To unveil the full potential of the sixth generation, it is becoming even more evident that security measurements should be considered at all layers of the network. This work aims to contribute in this direction by investigating the employment of unmanned aerial vehicles (UAVs) for providing secure transmissions in ground IoT networks. Toward this purpose, it is considered that a set of UAVs acting as aerial base stations provide secure connectivity between the network and multiple ground nodes. Then, the association of IoT nodes, the 3-D positioning of the UAVs, and the power allocation of the UAVs are obtained by leveraging game theoretic and convex optimization-based tools with the goal of increasing the amount of nodes that achieve perfect secrecy in the system. It is shown that the proposed framework obtains better and more efficient secrecy performance over an IoT network than state-of-the-art greedy algorithms for positioning and association.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM - Signal Processing & Communications Centre for Wireless Communications, University of Oulu
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
FLORES CABEZAS, Xavier Alejandro ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; University of Oulu > Centre for Wireless Communications
Osorio, Diana Pamela Moya ; University of Oulu, Centre for Wireless Communications, Oulu, Finland ; Linköping University, Communication Systems Division, Department of Electrical Engineering, Linköping, Sweden
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Strategic Deployment of Swarm of UAVs for Secure IoT Networks
Date de publication/diffusion :
28 mai 2024
Titre du périodique :
IEEE Transactions on Aerospace and Electronic Systems
ISSN :
0018-9251
eISSN :
1557-9603
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
This work was supported in part by the Research Council of Finland (former Academy of Finland) 6G Flagship Programme under Grant 346208, in part by project FAITH under Grant 334280, and in part by the Excellence Center at Linkoping- Lund in Information Technology (ELLIIT).
P. Porambage, G. Gür, D. P. M. Osorio, M. Liyanage, A. Gurtov, and M. Ylianttila, "The roadmap to 6G security and privacy, " IEEE Open J. Commun. Soc., vol. 2, pp. 1094-1122, 2021.
D. P. M. Osorio, E. E. B. Olivo, H. Alves, and M. Latva-Aho, "SafeguardingMTCat the physical layer: Potentials and challenges, " IEEE Access, vol. 8, pp. 101437-101447, 2020.
X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, "Physical layer security in UAV systems: Challenges and opportunities, " IEEE Wireless Commun., vol. 26, no. 5, pp. 40-47, Oct. 2019.
D. P.M. Osorio et al., "Towards 6G-enabled internet of vehicles: Security and privacy, " IEEE Open J. Commun. Soc., vol. 3, pp. 82-105, 2022.
O.M.Bushnaq, A. Chaaban, and T.Y. Al-Naffouri, "The role ofUAVIoT networks in future wildfire detection, " IEEE Internet Things J., vol. 8, no. 23, pp. 16984-16999, Dec. 2021.
R. L. Scalea et al., "Opportunities for autonomous UAV in harsh environments, " in Proc. 16th Int. Symp. Wireless Commun. Syst., 2019, pp. 227-232.
Y. Zhou et al., "Improving physical layer security via a UAV friendly jammer for unknown eavesdropper location, " IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11280-11284, Nov. 2018.
W.Wei, X. Pang, J. Tang, N. Zhao, X.Wang, and A.Nallanathan, "Secure transmission design for aerial IRS assisted wireless networks, " IEEE Trans. Commun., vol. 71, no. 6, pp. 3528-3540, Jun. 2023.
S. Yoo, S. Jeong, and J. Kang, "Hybrid UAV-enabled secure offloading via deep reinforcement learning, " IEEEWireless Commun. Lett., vol. 12, no. 6, pp. 972-976, Jun. 2023.
P. Chen et al., "Secure task offloading for MEC-aided-UAV system, " IEEE Trans. Intell. Veh., vol. 8, no. 5, pp. 3444-3457, May 2023.
H. Lu, Z. Shi, N. Zhao, A. Nallanathan, and X. Wang, "Secrecy analysis of control information forUAV, " IEEE Trans. Veh. Technol., vol. 72, no. 12, pp. 16845-16850, Dec. 2023.
A. A. Salem, M. H. Ismail, and A. S. Ibrahim, "Active reconfigurable intelligent surface-assisted MISO integrated sensing and communication systems for secure operation, " IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 4919-4931, Apr. 2023.
R. Dong, B.Wang, J. Tian, T. Cheng, and D. Diao, "Deep reinforcement learning based UAV for securing mmWave communications, " IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 5429-5434, Apr. 2023.
E. Illi, M. Qaraqe, F. E. Bouanani, and S. Al-Kuwari, "On the physical-layer security of a dual-hopUAV-based network in the presence of per-hop eavesdropping and imperfect CSI, " IEEE Internet Things J., vol. 10, no. 9, pp. 7850-7867, May 2023.
A. Li, Q. Wu, and R. Zhang, "UAV-enabled cooperative jamming for improving secrecy of ground wiretap channel, " IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 181-184, Feb. 2019.
Y. Zhou et al., "Secure communications for UAV-enabled mobile edge computing systems, " IEEE Trans. Commun., vol. 68, no. 1, pp. 376-388, Jan. 2020.
X. Pang, M. Liu, N. Zhao, Y. Chen, Y. Li, and F. R. Yu, "Secrecy analysis of UAV-based mmWave relaying networks, " IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4990-5002, Aug. 2021.
M. Kim, S. Kim, and J. Lee, "Securing communications with friendly unmanned aerial vehicle jammers, " IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1972-1977, Feb. 2021.
J. P. Vilela, M. Bloch, J. Barros, and S. W. McLaughlin, "Wireless secrecy regions with friendly jamming, " IEEE Trans. Inf. Forensics Secur., vol. 6, no. 2, pp. 256-266, Jun. 2011.
X. A. F. Cabezas, D. P. M. Osorio, and M. Latva-aho, "Weighted secrecy coverage analysis and the impact of friendly jamming over UAV-enabled networks, " in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit, 2021, pp. 124-129.
X. A. F. Cabezas, D. P. M. Osorio, and M. Latva-Aho, "Distributed UAV-enabled zero-forcing cooperative jamming scheme for safeguarding future wireless networks, " in Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun., 2021, pp. 739-744.
X. A. F. Cabezas, D. P. M. Osorio, and M. Latva-aho, "Positioning and power optimisation for UAV-assisted networks in the presence of eavesdroppers: A multi-armed bandit approach, " EURASIP J. Wireless Commun. Netw., vol. 2022, 2022, Art. no. 85.
X. A. F. Cabezas, D. P. M. Osorio, and M. Juntti, "A multi-armed bandit framework for efficient UAV-based cooperative jamming coverage, " IEEE Trans. Veh. Technol., vol. 72, no. 12, pp. 16893-16898, Dec. 2023.
Y. Li et al., "Joint trajectory and power optimization for jammingaided NOMA-UAV secure networks, " IEEE Syst. J., vol. 17, no. 1, pp. 732-743, Mar. 2023.
T. Zeng, O. Semiari, M. Mozaffari, M. Chen, W. Saad, and M. Bennis, "Federated learning in the sky: Joint power allocation and scheduling with UAV swarms, " in Proc. IEEE Int. Conf. Commun., 2020, pp. 1-6.
N. Zhao, Y. Cheng, Y. Pei, Y.-C. Liang, and D. Niyato, "Deep reinforcement learning for trajectory design and power allocation in UAV networks, " in Proc. IEEE Int. Conf. Commun., 2020, pp. 1-6.
G. Fragkos, N. Kemp, E. E. Tsiropoulou, and S. Papavassiliou, "Artificial intelligence empowered UAV data offloading in mobile edge computing, " in Proc. IEEE Int. Conf. Commun., 2020, pp. 1-7.
K. Li, W. Ni, E. Tovar, and A. Jamalipour, "Deep Q-Learning based resource management in UAV-assisted wireless powered IoT networks, " in Proc. IEEE Int. Conf. Commun., 2020, pp. 1-6.
H. E. Hammouti, D. Hamza, B. Shihada, M.-S. Alouini, and J. S. Shamma, "The optimal and the greedy: Drone association and positioning schemes for internet of UAVs, " IEEE Internet Things J., vol. 8, no. 18, pp. 14066-14079, Sep. 2021.
L. Xiao, C. Xie, M. Min, and W. Zhuang, "User-centric view of unmanned aerial vehicle transmission against smart attacks, " IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3420-3430, Apr. 2018.
J. Liu and W. Yang, "Secure UAV communication against cooperative adaptive eavesdroppers, " Wireless Netw., vol. 28, no. 3, pp. 1113-1128, 2022, doi: 10.1007/s11276-022-02909-x.
C. You and R. Zhang, "3D trajectory optimization in Rician fading for UAV-enabled data harvesting, " IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3192-3207, Jun. 2019.
V. Dao, H. Tran, S. Girs, and E. Uhlemann, "Reliability and fairness for UAV communication based on non-orthogonal multiple access, " in Proc. IEEE Int. Conf. Commun. Workshops, 2019, pp. 1-6.
A. Al-Hourani, S. Kandeepan, and S. Lardner, "OptimalLAPaltitude formaximum coverage, " IEEEWireless Commun. Lett., vol. 3, no. 6, pp. 569-572, Dec. 2014.
A. D. Wyner, "The wire-tap channel, " Bell System Tech. J., vol. 54, no. 8, pp. 1355-1387, 1975.
S. Leung-Yan-Cheong and M. Hellman, "The Gaussian wire-tap channel, " IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451-456, Jul. 1978.
J. R. Marden and J. S. Shamma, "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation, " Games Econ. Behav., vol. 75, no. 2, pp. 788-808, 2012, doi: 10.1016/j.geb.2012.03.006.
M. Hasanbeig and L. Pavel, "From game-theoretic multi-agent log linear learning to reinforcement learning, " 2018, arXiv:1802.02277.
M. R. Bonyadi and Z. Michalewicz, "Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review, " Evol. Computation, vol. 25, no. 1, pp. 1-54, 2017, doi: 10.1162/EVCO-r-00180.
M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press, 1998.
M. Ahmed, R. Seraj, and S. M. S. Islam, "The k-means algorithm: A comprehensive survey and performance evaluation, " Electronics, vol. 9, no. 8, 2020, Art. no. 1295. [Online]. Available: https://www.mdpi.com/2079-9292/9/8/1295