Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Beyond the Public Mempool: Catching DeFi Attacks Before They Happen with Real-Time Smart Contract Analysis
PARHIZKARI, Bahareh; IANNILLO, Antonio Ken; FERREIRA TORRES, Christof et al.
2024In Beyond the Public Mempool: Catching DeFi Attacks Before They Happen with Real-Time Smart Contract Analysis
Peer reviewed
 

Documents


Texte intégral
Beyond_the_Public_Mempool_final.pdf
Preprint Auteur (952.61 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
smart contract, defi, decentralized finance, blockchain
Résumé :
[en] Beyond the Public Mempool: Catching DeFi Attacks Before They Happen with Real-Time Smart Contract Analysis The rise of decentralized finance has brought a vast range of opportunities to the blockchain space and many risks. This paper tackles the challenge of detecting malicious smart contracts on Ethereum designed to exploit vulnerabilities and cause financial losses. We present a novel approach for preemptively identifying malicious smart contracts during their deployment stage. For this purpose, we gathered a dataset comprising 161 malicious smart contracts and 5500 benign smart contracts. By introducing and extracting various features related to the deployer, transaction characteristics, and deployment bytecode and selecting the most impactful features, we developed multiple models using different machine learning (ML) classification algorithms, compared them using the set of most impactful features, and selected the most accurate one as our detection model. We compared the model's performance with a publicly available ML malicious smart contract detection tool to benchmark it. The results demonstrate that our model achieves a superior True Positive Rate while having a lower False Positive Rate. Our model achieved a 79.17% detection rate for malicious smart contracts while maintaining a False Positive rate of less than 1.8%. Our model provides swift detection capabilities by alerting users immediately after a contract's deployment, thus enabling timely response and risk mitigation.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SEDAN - Service and Data Management in Distributed Systems
Disciplines :
Sciences informatiques
Auteur, co-auteur :
PARHIZKARI, Bahareh  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
IANNILLO, Antonio Ken  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SEDAN > Team Radu STATE
FERREIRA TORRES, Christof ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SEDAN > Team Radu STATE
Xu, Joseph;  Quantstamp
Banescu, Sebastian;  Quantstamp
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Beyond the Public Mempool: Catching DeFi Attacks Before They Happen with Real-Time Smart Contract Analysis
Date de publication/diffusion :
2024
Nom de la manifestation :
20th EAI International Conference on Security and Privacy in Communication Networks
Organisateur de la manifestation :
EAI
Lieu de la manifestation :
Dubai, Emirats Arabes Unis
Date de la manifestation :
28-30 October, 2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
Beyond the Public Mempool: Catching DeFi Attacks Before They Happen with Real-Time Smart Contract Analysis
Maison d'édition :
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering ((LNICST,volume 629))
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Organisme subsidiant :
Quantstamp
Disponible sur ORBilu :
depuis le 18 octobre 2024

Statistiques


Nombre de vues
225 (dont 49 Unilu)
Nombre de téléchargements
184 (dont 14 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu