[en] We study the meaning of "adding a constant to a language" for any doctrine,
and "adding an axiom to a theory" for a primary doctrine, by showing how these
are actually two instances of the same construction. We prove their universal
properties, and how these constructions are compatible with additional
structure on the doctrine. Existence of Kleisli object for comonads in the
2-category of indexed poset is proved in order to build these constructions.
Disciplines :
Mathématiques
Auteur, co-auteur :
GUFFANTI, Francesca ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
J. Beck, Distributive laws, in: Seminar on Triples and Categorical Homology Theory, edited by B. Eckmann (Springer, 1969), pp. 119–140.
F. Borceux, Handbook of Categorical Algebra: Volume 1, Basic Category Theory (Cambridge University Press, 1994).
F. Borceux, Handbook of Categorical Algebra: Volume 2, Categories and Structures (Cambridge University Press, 1994).
C. C. Chang and H. J. Keisler, Model Theory (Elsevier, 1990).
F. Dagnino and G. Rosolini, Doctrines, modalities and comonads, Math. Structures Comput. Sci. 31(7), 769–798 (2021).
J. Emmenegger, F. Pasquali, and G. Rosolini, Elementary doctrines as coalgebras, J. Pure Appl. Algebra 224 (2020).
K. Gödel, Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatsh. Math. Phys. 37, 349–360 (1930).
L. Henkin, The completeness of the first-order functional calculus, J. Symb. Log. 14(3), 159–166 (1949).
P. T. Johnstone, Sketches of an Elephant: A Topos Theory Compendium, Oxford Logic Guides, (Oxford University Press, 2002).
F. William Lawvere, Adjointness in foundations, Dialectica 23(3/4), 281–296 (1969).
F. William Lawvere, Diagonal arguments and cartesian closed categories, in: Category Theory, Homology Theory and their Applications, Vol. 2. Proceedings of the Conference Held at the Seattle Research Center of the Battelle Memorial Institute, June 24 - July 19, 1968, edited by P. J. Hilton, Lecture Notes in Mathematics Vol. 92 (Springer, 1969), pp. 134–145.
F. William Lawvere, Equality in hyperdoctrines and comprehension schema as an adjoint functor, Appl. Categ. Algebra 17, 1–14 (1970).
S. MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics Vol. 5 (Springer, 1971).
M. E. Maietti and G. Rosolini, Elementary quotient completion, Theory Appl. Categ. 27 (2013).
M. E. Maietti and G. Rosolini, Quotient completion for the foundation of constructive mathematics, Log. Univers. 7(3), 371–402 (2013).
F. Pasquali, A co-free construction for elementary doctrines, Appl. Categ. Structures 23(1), 29–41 (2015).
J. Power and H. Watanabe, Combining a monad and a comonad, Theoret. Comput. Sci. 280, 137–162 (2002).
R. Street, The formal theory of monads, J. Pure Appl. Algebra 2(2), 149–168 (1972).
J. Szigeti, On limits and colimits in the Kleisli category, Cahiers de topologie et géométrie différentielle 24(4), 381–391 (1983).
K. Tent and M. Ziegler, A Course in Model Theory, Lecture Notes in Logic Vol. 40 (Cambridge University Press, 2012).