Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A Risk-Based AML Framework: Finding Associates Through Ultimate Beneficial Owners
JAFARNEJAD, Sasan; ROBINET, François; FRANK, Raphaël
2024In CIFER 2024
Peer reviewed
 

Documents


Texte intégral
paper_21.pdf
Preprint Auteur (384.28 kB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
SimRank; Anti-Money Laundering; Know Your Customer (KYC); Risk Assessment
Résumé :
[en] The ever increasing regulatory requirements for Anti-Money Laundering (AML) compliance presents significant challenges for financial institutions and small businesses globally. Efficiently navigating these requirements is not only crucial for legal adherence but also for safeguarding the integrity of the global financial system. In response to this challenge, we develop a framework that leverages advanced algorithms to improve the identification and risk assessment processes within Know Your Customer (KYC) procedures. By employing a technique for measuring graph-based node similarities, our approach enhances the detection of Politically Exposed Persons (PEPs) and their known associates, facilitating a more nuanced and comprehensive analysis than traditional methods allow. We study the dataset of Ultimate Beneficial Owner (UBO) registry in Luxembourg and translate our findings into two risk indicators:involvement with underage shareholders, and number of companies at the address. We integrate these two indicators as well as several other components of AML compliance, including country risk indices, beneficial ownership structures, and adverse media exposure, into a singular, coherent risk metric. The framework is designed to be both modular, supporting various degrees of regulatory scrutiny, and scalable, suitable for evolving regulatory landscapes. This risk metric can be used to determine whether Enhanced Due Diligence (EDD) is required by European AML directives. The end result is a more robust defense against financial crimes and an enhancement of the overall AML/CFT efforts within the EU and beyond.
Centre de recherche :
NCER-FT - FinTech National Centre of Excellence in Research
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Droit, criminologie & sciences politiques: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
JAFARNEJAD, Sasan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Ubiquitous and Intelligent Systems (UBI-X)
ROBINET, François ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > Ubiquitous and Intelligent Systems > Team Raphaël FRANK
FRANK, Raphaël ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Ubiquitous and Intelligent Systems (UBI-X)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A Risk-Based AML Framework: Finding Associates Through Ultimate Beneficial Owners
Date de publication/diffusion :
2024
Nom de la manifestation :
IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING
Lieu de la manifestation :
Hoboken, Etats-Unis - New Jersey
Date de la manifestation :
October 22 and 23, 2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
CIFER 2024
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Projet FnR :
FNR16570468 - 2021 (01/07/2022-30/06/2030) - Yves Le Traon
Intitulé du projet de recherche :
RoboComp
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
NCER22/IS/16570468/NCER-FT
Subventionnement (détails) :
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), grant reference NCER22/IS/16570468/NCER-FT. For the purpose of open access, and in fulfilment of the obligations arising from the grant agreement, the author has applied a Creative Com- mons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Disponible sur ORBilu :
depuis le 19 septembre 2024

Statistiques


Nombre de vues
257 (dont 18 Unilu)
Nombre de téléchargements
162 (dont 4 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu