[en] Alzheimer's disease (AD) and Parkinson's disease (PD) cause significant neuronal loss and severely impair daily living. Despite different clinical manifestations, these disorders share common pathological molecular hallmarks, including mitochondrial dysfunction and synaptic degeneration. A detailed comparison of molecular changes at single-cell resolution in the cortex, as one of the main brain regions affected in both disorders, may reveal common susceptibility factors and disease mechanisms. We performed single-cell transcriptomic analyses of post-mortem cortical tissue from AD and PD subjects and controls to identify common and distinct disease-associated changes in individual genes, cellular pathways, molecular networks, and cell-cell communication events, and to investigate common mechanisms. The results revealed significant disease-specific, shared, and opposing gene expression changes, including cell type-specific signatures for both diseases. Hypoxia signaling and lipid metabolism emerged as significantly modulated cellular processes in both AD and PD, with contrasting expression alterations between the two diseases. Furthermore, both pathway and cell-cell communication analyses highlighted shared significant alterations involving the JAK-STAT signaling pathway, which has been implicated in the inflammatory response in several neurodegenerative disorders. Overall, the analyses revealed common and distinct alterations in gene signatures, pathway activities, and gene regulatory subnetworks in AD and PD. The results provide insights into coordinated changes in pathway activity and cell-cell communication that may guide future diagnostics and therapeutics.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Neurology Biotechnology Human health sciences: Multidisciplinary, general & others Life sciences: Multidisciplinary, general & others
We acknowledge support from the Luxembourg National Research Fund (FNR) for the project DIGIPD (INTER/ERAPERMED20/14599012) as part of the European Union's Horizon 2020 research and innovation program and for the projects RECAST (INTER/22/17104370/RECAST) and AD-PLCG2 (INTER/JPND23/17999421/AD-PLCG2) as part of the Joint Programme\u2014Neurodegenerative Disease Research (JPND).
Commentary :
The original article is available at: https://link.springer.com/content/pdf/10.1007/s12035-024-04419-7.pdf
Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J (2022) A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci 23(3). https://doi.org/10.3390/ijms23031851
S. Gao H.C. Hendrie K.S. Hall S. Hui The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis Arch Gen Psychiatry 1998 55 9 809 815 1:STN:280:DyaK1cvgsFCitg%3D%3D 10.1001/archpsyc.55.9.809 9736007
W. Poewe et al. Parkinson disease Nat Rev Dis Primers 2017 3 17013 10.1038/nrdp.2017.13 28332488
J. Rogers D. Mastroeni B. Leonard J. Joyce A. Grover Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 2007 82 235 246 1:CAS:528:DC%2BD2sXhtVWqs77L 10.1016/S0074-7742(07)82012-5 17678964
K.J. Barnham C.L. Masters A.I. Bush Neurodegenerative diseases and oxidative stress Nat Rev Drug Discov 2004 3 3 205 214 1:CAS:528:DC%2BD2cXit12nsL4%3D 10.1038/nrd1330 15031734
C. Fang L. Lv S. Mao H. Dong B. Liu Cognition deficits in Parkinson’s disease: mechanisms and treatment Parkinsons Dis 2020 2020 2076942 1:CAS:528:DC%2BB3cXitlChsbzI 10.1155/2020/2076942 32269747 7128056
E. Glaab R. Schneider Comperative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson’s disease Neurobiol Dis 2015 74 1 13 1:CAS:528:DC%2BC2cXhvFCns7jK 10.1016/j.nbd.2014.11.002 25447234
Gabitto MI et al (2023) Integrated multimodal cell atlas of Alzheimer’s disease. Res Sq. https://doi.org/10.21203/rs.3.rs-2921860/v1
A Institute for Brain Science (2022) Isolation of Nuclei from Human or NHP Brain Tissue v2. https://doi.org/10.17504/protocols.io.ewov149p7vr2/v3
Zhu B et al (2022) Single-cell transcriptomic and proteomic analysis of Parkinson’s disease Brains. BioRxiv. https://doi.org/10.1101/2022.02.14.480397
C. Hafemeister R. Satija Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression Genome Biol 2019 20 1 296 1:CAS:528:DC%2BC1MXisVyht7fF 10.1186/s13059-019-1874-1 31870423 6927181
“R: The R Project for Statistical Computing.” https://www.r-project.org/ (accessed Jun. 11, 2024).
V.D. Blondel J.-L. Guillaume R. Lambiotte E. Lefebvre Fast unfolding of communities in large networks J Stat Mech 2008 2008 10 P10008 10.1088/1742-5468/2008/10/P10008
P.J. Rousseeuw Silhouettes: A graphical aid to the interpretation and validation of cluster analysis J Comput Appl Math 1987 20 53 65 10.1016/0377-0427(87)90125-7
“‘Finding Groups in Data’: Cluster Analysis Extended Rousseeuw et al. [R package cluster version 2.1.6]", Dec. 01, 2023. https://cran.r-project.org/web/packages/cluster/index.html (accessed Jun. 11, 2024).
L. Zappia A. Oshlack Clustering trees: a visualization for evaluating clusterings at multiple resolutions Gigascience 2018 7 7 giy083 1:CAS:528:DC%2BC1MXlvFGhu7k%3D 10.1093/gigascience/giy083 30010766 6057528
A. Ianevski A.K. Giri T. Aittokallio Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data Nat Commun 2022 13 1 1246 1:CAS:528:DC%2BB38XmvVyisL8%3D 10.1038/s41467-022-28803-w 35273156 8913782
T. Wu et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data Innovation (Camb) 2021 2 3 100141 1:CAS:528:DC%2BB38XitVemt7jI 10.1016/j.xinn.2021.100141 34557778
S. Zickenrott V.E. Angarica B.B. Upadhyaya A. del Sol Prediction of disease-gene-drug relationships following a differential network analysis Cell Death Dis 2016 7 1 e2040 1:STN:280:DC%2BC28nhsVCiuw%3D%3D 10.1038/cddis.2015.393 26775695 4816176
P. Shannon et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Res 2003 13 11 2498 2504 1:CAS:528:DC%2BD3sXovFWrtr4%3D 10.1101/gr.1239303 14597658 403769
G. Baruzzo G. Cesaro B. Di Camillo Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm Bioinformatics 2022 38 7 1920 1929 1:CAS:528:DC%2BB38XhtFygs7rM 10.1093/bioinformatics/btac036 35043939
R. Browaeys W. Saelens Y. Saeys NicheNet: modeling intercellular communication by linking ligands to target genes Nat Methods 2020 17 2 159 162 1:CAS:528:DC%2BC1MXitlCht7%2FP 10.1038/s41592-019-0667-5 31819264
S. Bandyopadhyay Role of neuron and glia in Alzheimer’s disease and associated vascular dysfunction Front Aging Neurosci 2021 13 653334 1:CAS:528:DC%2BB3MXisVKrtb3M 10.3389/fnagi.2021.653334 34211387 8239194
S.J. Hernandez G. Fote A.M. Reyes-Ortiz J.S. Steffan L.M. Thompson Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease Matrix Biology Plus 2021 12 100089 1:CAS:528:DC%2BB38XksFaqtr4%3D 10.1016/j.mbplus.2021.100089 34786551 8579148
T.-Y. Ha Y.R. Choi H.R. Noh S.-H. Cha J.-B. Kim S.M. Park Age-related increase in caveolin-1 expression facilitates cell-to-cell transmission of α-synuclein in neurons Mol Brain 2021 14 1 122 1:CAS:528:DC%2BB3MXhvFWrur%2FP 10.1186/s13041-021-00834-2 34321069 8320051
H. Cihankaya C. Theiss V. Matschke Significance of intercellular communication for neurodegenerative diseases Neural Regen Res 2022 17 5 1015 1017 1:CAS:528:DC%2BB38XivFSms77I 10.4103/1673-5374.324840 34558526
H. Okazawa S. Estus The JNK/c-Jun cascade and Alzheimer’s disease Am J Alzheimers Dis Other Demen 2002 17 2 79 88 10.1177/153331750201700209 11954673 10833950
A.J. Anderson B.J. Cummings C.W. Cotman Increased immunoreactivity for Jun- and Fos-related proteins in Alzheimer’s disease: Association with pathology Exp Neurol 1994 125 2 286 295 1:STN:280:DyaK2c7kvVSmsw%3D%3D 10.1006/exnr.1994.1031 8313943
N. Jantaratnotai A. Ling J. Cheng C. Schwab P.L. McGeer J.G. McLarnon Upregulation and expression patterns of the angiogenic transcription factor ets-1 in Alzheimer’s disease brain J Alzheimers Dis 2013 37 2 367 377 1:CAS:528:DC%2BC3sXhsVehtrjJ 10.3233/JAD-122191 23948889
J. Català-Solsona A.J. Miñano-Molina J. Rodríguez-Álvarez Nr4a2 transcription factor in hippocampal synaptic plasticity, memory and cognitive dysfunction: A perspective review Front Mol Neurosci 2021 14 786226 1:CAS:528:DC%2BB38XoslSqu7c%3D 10.3389/fnmol.2021.786226 34880728 8645690
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J (2023) The impact of neurotransmitters on the neurobiology of neurodegenerative diseases. Int J Mol Sci 24(20). https://doi.org/10.3390/ijms242015340
Sazonova MA et al (2021) Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020699
K. Guo et al. Fibroblast growth factor 10 ameliorates neurodegeneration in mouse and cellular models of Alzheimer’s disease via reducing tau hyperphosphorylation and neuronal apoptosis Aging Cell 2023 22 9 e13937 1:CAS:528:DC%2BB3sXhsFyiurjP 10.1111/acel.13937 37503695 10497839
F. Lezoualc’h S. Engert B. Berning C. Behl Corticotropin-releasing hormone-mediated neuroprotection against oxidative stress is associated with the increased release of non-amyloidogenic amyloid beta precursor protein and with the suppression of nuclear factor-kappaB Mol Endocrinol 2000 14 1 147 159 10.1210/mend.14.1.0403 10628754
S. Quintremil F. Medina Ferrer J. Puente M. Elsa Pando M. Antonieta Valenzuela G.E.A. Abreu M.E.H. Aguilar Roles of semaphorins in neurodegenerative diseases Neurons - Dendrites and Axons 2019 IntechOpen
C.M. Simon et al. Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy Acta Neuropathol 2015 130 3 373 387 1:CAS:528:DC%2BC2MXps1eisrc%3D 10.1007/s00401-015-1446-8 26025657 4541707
W. Zhang D. Xiao Q. Mao H. Xia Role of neuroinflammation in neurodegeneration development Signal Transduct Target Ther 2023 8 1 267 10.1038/s41392-023-01486-5 37433768 10336149
Cherry P, Gilch S (2020) The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197016
H. Zhang et al. Enhanced Cerebral Hemodynamics and Cognitive Function Via Knockout of Dual-Specificity Protein Phosphatase 5 J Pharm Pharmacol Res 2023 7 2 49 61 10.26502/fjppr.070 37588944 10430881
H. Yu M. Xiong Z. Zhang The role of glycogen synthase kinase 3 beta in neurodegenerative diseases Front Mol Neurosci 2023 16 1209703 1:CAS:528:DC%2BB2cXlslCgtLg%3D 10.3389/fnmol.2023.1209703 37781096 10540228
B.F. Corbett et al. ΔFosB regulates gene expression and cognitive dysfunction in a mouse model of Alzheimer’s disease Cell Rep 2017 20 2 344 355 1:CAS:528:DC%2BC2sXhtFKhtrzE 10.1016/j.celrep.2017.06.040 28700937 5785235
A. Ayka A.Ö. Şehirli The role of SLC transporters protein in neurodegenerative disorders Clin Psychopharmacol Neurosci 2020 18 2 174 187 1:CAS:528:DC%2BB3cXitlKru7nK 10.9758/cpn.2020.18.2.174 32329299
Y.S. Kim B.-E. Yoon Altered GABAergic signaling in brain disease at various stages of life Exp Neurobiol 2017 26 3 122 131 10.5607/en.2017.26.3.122 28680297 5491580
J.-Y. Koh S.-J. Lee Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases Mol Brain 2020 13 1 116 1:CAS:528:DC%2BB3cXhs1ygsLnL 10.1186/s13041-020-00654-w 32843100 7448430
K. Saito et al. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model Brain 2024 147 2 698 716 10.1093/brain/awad358 37955589
E.R. Mahoney et al. Brain expression of the vascular endothelial growth factor gene family in cognitive aging and Alzheimer’s disease Mol Psychiatry 2021 26 3 888 896 1:CAS:528:DC%2BC1MXhsVWktb3J 10.1038/s41380-019-0458-5 31332262
H.-S. Yang et al. Plasma VEGFA and PGF impact longitudinal tau and cognition in preclinical Alzheimer’s disease Brain 2024 147 6 2158 2168 10.1093/brain/awae034 38315899
T. Falk R.T. Gonzalez S.J. Sherman The yin and yang of VEGF and PEDF: multifaceted neurotrophic factors and their potential in the treatment of Parkinson’s Disease Int J Mol Sci 2010 11 8 2875 2900 1:CAS:528:DC%2BC3cXhtVCitbfI 10.3390/ijms11082875 21152280 2996745
Taoufik E, Kouroupi G, Zygogianni O, Matsas R (2018) Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 8(9). https://doi.org/10.1098/rsob.180138
R.E. Estes B. Lin A. Khera M.Y. Davis Lipid metabolism influence on neurodegenerative disease progression: is the vehicle as important as the cargo? Front Mol Neurosci 2021 14 788695 1:CAS:528:DC%2BB38XhtVygt77K 10.3389/fnmol.2021.788695 34987360 8721228
H. Chew V.A. Solomon A.N. Fonteh Involvement of lipids in Alzheimer’s disease pathology and potential therapies Front Physiol 2020 11 598 10.3389/fphys.2020.00598 32581851 7296164
L. Guzman-Martinez R.B. Maccioni V. Andrade L.P. Navarrete M.G. Pastor N. Ramos-Escobar Neuroinflammation as a common feature of neurodegenerative disorders Front Pharmacol 2019 10 1008 1:CAS:528:DC%2BB3cXmsFWrt70%3D 10.3389/fphar.2019.01008 31572186 6751310
J. Hu S.L. Lin M. Schachner A fragment of cell adhesion molecule L1 reduces amyloid-β plaques in a mouse model of Alzheimer’s disease Cell Death Dis 2022 13 1 48 1:CAS:528:DC%2BB38XislartbY%3D 10.1038/s41419-021-04348-6 35013124 8748658
S. Murase E.M. Schuman The role of cell adhesion molecules in synaptic plasticity and memory Curr Opin Cell Biol 1999 11 5 549 553 1:CAS:528:DyaK1MXmslajtb0%3D 10.1016/s0955-0674(99)00019-8 10508654
M. Eve J. Gandawijaya L. Yang A. Oguro-Ando Neuronal cell adhesion molecules may mediate neuroinflammation in autism spectrum disorder Front Psychiatry 2022 13 842755 10.3389/fpsyt.2022.842755 35492721 9051034
X. Bao et al. Cell adhesion molecule pathway genes are regulated by cis-regulatory SNPs and show significantly altered expression in Alzheimer’s disease brains Neurobiol Aging 2015 36 10 2904.e1 2904.e7 1:CAS:528:DC%2BC2MXhtFWgtrbJ 10.1016/j.neurobiolaging.2015.06.006 26149918
L. Bertram M.B. McQueen K. Mullin D. Blacker R.E. Tanzi Systematic meta-analyses of Alzheimer’s disease genetic association studies: The AlzGene database Nat Genet 2007 39 1 17 23 1:CAS:528:DC%2BD28XhtlGktLjM 10.1038/ng1934 17192785
I. Leshchyns’ka V. Sytnyk Synaptic cell adhesion molecules in Alzheimer’s disease Neural Plast 2016 2016 6427537 1:CAS:528:DC%2BC1cXmsFSqt7k%3D 10.1155/2016/6427537 27242933 4868906
S. Wang B. Wang D. Shang K. Zhang X. Yan X. Zhang Ion channel dysfunction in astrocytes in neurodegenerative diseases Front Physiol 2022 13 814285 10.3389/fphys.2022.814285 35222082 8864228
A. Merelli J.C.G. Rodríguez J. Folch M.R. Regueiro A. Camins A. Lazarowski Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities Curr Neuropharmacol 2018 16 10 1484 1498 1:CAS:528:DC%2BC1cXit1SmtrzF 10.2174/1570159X16666180110130253 29318974 6295932
T. Hsieh et al. JunB is critical for survival of T helper cells Front Immunol 2022 13 901030 1:CAS:528:DC%2BB38XitVClt7bM 10.3389/fimmu.2022.901030 35837408 9273772
V. Rawat W. Goux M. Piechaczyk S.R.D. Mello c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity Mol Neurobiol 2016 53 2 1165 1180 1:CAS:528:DC%2BC28XisFOntbk%3D 10.1007/s12035-014-9058-1 25592718
C.A. Saura J. Valero The role of CREB signaling in Alzheimer’s disease and other cognitive disorders Rev Neurosci 2011 22 2 153 169 1:CAS:528:DC%2BC3sXhtlWktrzI 10.1515/RNS.2011.018 21476939
Z. Zhang J. Yan Y. Chang S. ShiDu Yan H. Shi Hypoxia-inducible factor-1 as a target for neurodegenerative diseases Curr Med Chem 2011 18 28 4335 4343 1:CAS:528:DC%2BC3MXhtlSqsrbI 10.2174/092986711797200426 21861815 3213300
C. Peers M.L. Dallas H.E. Boycott J.L. Scragg H.A. Pearson J.P. Boyle Hypoxia and neurodegeneration Ann N Y Acad Sci 2009 1177 169 177 1:CAS:528:DC%2BD1MXhsFWksr%2FI 10.1111/j.1749-6632.2009.05026.x 19845619
X. Sun et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression Proc Natl Acad Sci USA 2006 103 49 18727 18732 1:CAS:528:DC%2BD28Xhtlaht7jJ 10.1073/pnas.0606298103 17121991 1693730
M. Guo X. Ji J. Liu Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson’s Disease Front Aging Neurosci 2022 14 919343 1:CAS:528:DC%2BB38XisVKmtbjI 10.3389/fnagi.2022.919343 35959288 9360429
Rusek M, Smith J, El-Khatib K, Aikins K, Czuczwar SJ, Pluta R (2023) The role of the JAK/STAT signaling pathway in the pathogenesis of Alzheimer’s disease: new potential treatment target. Int J Mol Sci 24(1). https://doi.org/10.3390/ijms24010864
M. Rothaug C. Becker-Pauly S. Rose-John The role of interleukin-6 signaling in nervous tissue Biochim Biophys Acta 2016 1863 6 Pt A 1218 1227 1:CAS:528:DC%2BC28XkvFGjtLk%3D 10.1016/j.bbamcr.2016.03.018 27016501
D. Matuskey et al. Synaptic Changes in Parkinson Disease Assessed with in vivo Imaging Ann Neurol 2020 87 3 329 338 1:CAS:528:DC%2BB3cXjtFegtL8%3D 10.1002/ana.25682 31953875 7065227
A. Hambali et al. Hypoxia-Induced Neuroinflammation in Alzheimer’s Disease: Potential Neuroprotective Effects of Centella asiatica Front Physiol 2021 12 712317 10.3389/fphys.2021.712317 34721056 8551388
Zhu H et al (2021) Janus Kinase Inhibition Ameliorates Cerebral Ischemic Injury and Neuroinflammation through Reducing NLRP3 Inflammasome Activation via JAK2/STAT3 Pathway Inhibition. Res Sq. https://doi.org/10.21203/rs.3.rs-239267/v1
H. Qin et al. Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration J Neurosci 2016 36 18 5144 5159 1:CAS:528:DC%2BC28XhtlKqtbrM 10.1523/JNEUROSCI.4658-15.2016 27147665 6123006
X.-Y. Hong et al. STAT3 ameliorates cognitive deficits by positively regulating the expression of NMDARs in a mouse model of FTDP-17 Signal Transduct Target Ther 2020 5 1 295 1:CAS:528:DC%2BB3MXis1GqurY%3D 10.1038/s41392-020-00290-9 33361763 7762755
I. Masse et al. Lipid lowering agents are associated with a slower cognitive decline in Alzheimer’s disease J Neurol Neurosurg Psychiatr 2005 76 12 1624 1629 1:STN:280:DC%2BD2Mnhtlensw%3D%3D 10.1136/jnnp.2005.063388
A. Solomon et al. Lipid-lowering treatment is related to decreased risk of dementia: a population-based study (FINRISK) Neurodegener Dis 2010 7 1–3 180 182 1:CAS:528:DC%2BC3cXks1KjtLY%3D 10.1159/000295659 20224281
M. Pantzaris G. Loukaides D. Paraskevis E.-G. Kostaki I. Patrikios Neuroaspis PLP10TM, a nutritional formula rich in omega-3 and omega-6 fatty acids with antioxidant vitamins including gamma-tocopherol in early Parkinson’s disease: A randomized, double-blind, placebo-controlled trial Clin Neurol Neurosurg 2021 210 106954 10.1016/j.clineuro.2021.106954 34607196
Hegelmaier T et al (2023) Supplementation with short-chain fatty acids and the prebiotic 2FL improves clinical outcome in PD. medRxiv. https://doi.org/10.1101/2023.11.01.23297866
Y. Xie Y. Wang S. Jiang X. Xiang J. Wang L. Ning Novel strategies for the fight of Alzheimer’s disease targeting amyloid-β protein J Drug Target 2022 30 3 259 268 1:CAS:528:DC%2BB3MXhvFCrtbrM 10.1080/1061186X.2021.1973482 34435898