Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise Sketch Instance Guided Attention
Sadil Khan, Mohammad; DUPONT, Elona Marcelle Eugénie; Aziz Ali, Sk et al.
2024In CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise Sketch Instance Guided Attention
Peer reviewed
 

Documents


Texte intégral
Khan_CAD-SIGNet_CAD_Language_Inference_from_Point_Clouds_using_Layer-wise_Sketch_CVPR_2024_paper.pdf
Postprint Auteur (8.1 MB)
Demander un accès
Annexes
Khan_CAD-SIGNet_CAD_Language_CVPR_2024_supplemental.pdf
(11 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Computer Vision and Pattern Recognition
Résumé :
[en] Reverse engineering in the realm of Computer-Aided Design (CAD) has been a longstanding aspiration, though not yet entirely realized. Its primary aim is to uncover the CAD process behind a physical object given its 3D scan. We propose CAD-SIGNet, an end-to-end trainable and auto-regressive architecture to recover the design history of a CAD model represented as a sequence of sketch-and-extrusion from an input point cloud. Our model learns visual-language representations by layer-wise cross-attention between point cloud and CAD language embedding. In particular, a new Sketch instance Guided Attention (SGA) module is proposed in order to reconstruct the fine-grained details of the sketches. Thanks to its auto-regressive nature, CAD-SIGNet not only reconstructs a unique full design history of the corresponding CAD model given an input point cloud but also provides multiple plausible design choices. This allows for an interactive reverse engineering scenario by providing designers with multiple next-step choices along with the design process. Extensive experiments on publicly available CAD datasets showcase the effectiveness of our approach against existing baseline models in two settings, namely, full design history recovery and conditional auto-completion from point clouds.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Sadil Khan, Mohammad
DUPONT, Elona Marcelle Eugénie ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Aziz Ali, Sk
CHERENKOVA, Kseniya ;  University of Luxembourg
KACEM, Anis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise Sketch Instance Guided Attention
Date de publication/diffusion :
2024
Nom de la manifestation :
CVF Conference on Computer Vision and Pattern Recognition
Date de la manifestation :
Mon Jun 17th through Fri Jun 21st, 2024
Titre de l'ouvrage principal :
CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise Sketch Instance Guided Attention
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Projet FnR :
BRIDGES2021/IS/16849599/FREE-3D
IF/17052459/CASCADES
Disponible sur ORBilu :
depuis le 18 août 2024

Statistiques


Nombre de vues
265 (dont 13 Unilu)
Nombre de téléchargements
66 (dont 3 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu