Steel-concrete composite; Shear connector; Bond interaction; Composite dowe; Concrete dowel; Group of connectors
Résumé :
[en] The performance of steel-concrete composite structures is dependent on the effective transmission of shear force at the material interface. Traditional shear connectors, i.e., headed studs, have limitations in shear resistance and fatigue behavior. To overcome these issues, Circular Reinforced Composite Dowel (CRCD) connectors have been developed. CRCDs are created by perforating a steel element, passing a reinforcement bar through the opening, and filling it with concrete. This paper provides a comprehensive review of the mechanical behavior of CRCD connectors, comprising three resistance mechanisms: interfacial bond, concrete dowel action, and traversing rebar resistance. Equations predicting their resistance are analyzed based on 55 experimental datasets. Key findings reveal that doubling the diameter of the traversing rebar can double the resistance of the connector. A 20% increase in connector strength accompanies a doubling of concrete strength. Optimizing bond resistance depends on steel surface treatment and sufficient transverse confinement. In a group of connectors, placing CRCDs in the first layer maximizes stiffness. Furthermore, this review highlights the lack of research on CRCD connectors positioned on H-shaped steel profiles, which could improve stiffness and shear resistance in the load introduction zone of steel-concrete composite columns or foundation piles.
Précision sur le type de document :
Compte rendu
Disciplines :
Ingénierie civile
Auteur, co-auteur :
PAOLETTI, Maxence ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Schäfer, Markus; Unilu - University of Luxembourg [LU] > Department of Engineering
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Transfer of shear force in circular reinforced composite dowel: A review
Bonilla, J., Bezerra, L.M., Mirambell, E., Massicotte, B., Review of stud shear resistance prediction in steel-concrete composite beams. Steel Compos Struct 27:3 (2018), 355–370, 10.12989/scs.2018.27.3.355.
Ovuoba, B., Prinz, G.S., Headed shear stud fatigue demands in composite bridge girders having varied stud pitch, girder depth, and span length. J Bridge Eng, 23(11), 2018, 04018085, 10.1061/(ASCE)BE.1943-5592.0001303.
Leonhardt, F., Andrä, W., Andrä, H.-P., Harre, W., Neues, vorteilhaftes verbundmittel für stahlverbund-tragwerke mit hoher dauerfestigkeit. Beton- Stahlbetonbau 82:12 (1987), 325–331, 10.1002/best.198700500.
Feldmann, M., Kopp, M., Pak, D., Composite dowels as shear connectors for composite beams - background to the German technical approval. Steel Constr 9:2 (2016), 80–88, 10.1002/stco.201610020.
Suzuki, A., Hiraga, K., Kimura, Y., Mechanical performance of puzzle-shaped shear connectors subjected to fully reversed cyclic stress. J Struct Eng, 149(7), 2023, 04023087, 10.1061/JSENDH.STENG-12261.
Rauscher, S., Hegger, J., Feldmann, M., Hechler, O., Load deformation behavior of shear connectors in high strength concrete. IABSE symposium, 2006, IABSE, Budapest.
Kim, S.-H., Lee, C.-G., Ahn, J.-H., Won, J.-H., Experimental study on joint of spliced steel–PSC hybrid girder, Part I: Proposed parallel-perfobond-rib-type joint. Eng Struct 33:8 (2011), 2382–2397, 10.1016/j.engstruct.2011.04.012.
Leng, J., Yang, J., Zhang, Z., Zou, Y., Du, J., Zhou, J., Mechanical behavior of a novel compact steel-UHPC joint for hybrid girder bridges: Experimental and numerical investigation. J Constr Steel Res, 218, 2024, 108742, 10.1016/j.jcsr.2024.108742.
Liu, Y., Xin, H., He, J., Xue, D., Ma, B., Experimental and analytical study on fatigue behavior of composite truss joints. J Constr Steel Res 83 (2013), 21–36, 10.1016/j.jcsr.2012.12.020.
Suzuki, A., Suzuki, K., Kimura, Y., Ultimate shear strength of perfobond shear connectors subjected to fully reversed cyclic loading. Eng Struct, 248, 2021, 113240, 10.1016/j.engstruct.2021.113240.
Classen, M., Gallwoszus, J., Stark, A., Anchorage of composite dowels in UHPC under fatigue loading. Struct Concr 17:2 (2016), 183–193, 10.1002/suco.201500034.
He, S., Fang, Z., Fang, Y., Liu, M., Liu, L., Mosallam, A.S., Experimental study on perfobond strip connector in steel–concrete joints of hybrid bridges. J Constr Steel Res, 2016, 11.
EN1994-1-1, S., Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings: European Standard EN 1994-1-1:2004., 2004, European Committee for Standardization, Brussels.
Oguejiofor, E.C., Hosain, M.U., A parametric study of perfobond rib shear connectors. Can J Civil Eng 21:4 (1994), 614–625, 10.1139/l94-063.
Ahn, J.-H., Lee, C.-G., Won, J.-H., Kim, S.-H., Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement. J Constr Steel Res 66:10 (2010), 1295–1307, 10.1016/j.jcsr.2010.04.008.
Al-Darzi, S.Y.K., Chen, A.R., Liu, Y.Q., Finite element simulation and parametric studies of perfobond rib connector. Am J Appl Sci 4:3 (2007), 122–127.
Vianna, J., Costa-Neves, L., da S. Vellasco, P., de Andrade, S., Experimental assessment of Perfobond and T-Perfobond shear connectors’ structural response. J Constr Steel Res 65:2 (2009), 408–421, 10.1016/j.jcsr.2008.02.011.
Vianna, J., de Andrade, S., da S. Vellasco, P., Costa-Neves, L., Experimental study of Perfobond shear connectors in composite construction. J Constr Steel Res 81 (2013), 62–75, 10.1016/j.jcsr.2012.11.002.
Cândido-Martins, J., Costa-Neves, L., Vellasco, P.d.S., Experimental evaluation of the structural response of Perfobond shear connectors. Eng Struct 32:8 (2010), 1976–1985, 10.1016/j.engstruct.2010.02.031.
Valente, I., Cruz, P.J., Experimental analysis of Perfobond shear connection between steel and lightweight concrete. J Constr Steel Res 60:3–5 (2004), 465–479, 10.1016/S0143-974X(03)00124-X.
Valente, I.B., Cruz, P.J.S., Experimental analysis of shear connection between steel and lightweight concrete. J Constr Steel Res 65:10 (2009), 1954–1963, 10.1016/j.jcsr.2009.06.001.
Duan, M., Zhang, S., Wang, X., Dong, F., Mechanical behavior in perfobond rib shear connector with UHPC-steel composite structure with coarse aggregate. KSCE J Civ Eng 24:4 (2020), 1255–1267, 10.1007/s12205-020-0923-3.
Deng, W., Gu, J., Liu, D., Hu, J., Zhang, J., Study of single perfobond rib with head stud shear connectors for a composite structure. Mag Concr Res, 2019, 10.1680/jmacr.18.00051.
Su, Q., Yang, G., Bradford, M.A., Bearing capacity of perfobond rib shear connectors in composite girder bridges. J Bridge Eng, 21(4), 2016, 06015009, 10.1061/(ASCE)BE.1943-5592.0000865.
Di, J., Zou, Y., Zhou, X., Qin, F., Peng, X., Push-out test of large perfobond connectors in steel–concrete joints of hybrid bridges. J Constr Steel Res 150 (2018), 415–429, 10.1016/j.jcsr.2018.09.002.
Zhao, C., Li, Z., Deng, K., Wang, W., Experimental investigation on the bearing mechanism of Perfobond rib shear connectors. Eng Struct 159 (2018), 172–184, 10.1016/j.engstruct.2017.12.047.
Wang, X., Liu, Y., Lu, Y., Li, X., Shear transfer mechanism of perforated web connection for concrete encased steel structures. Eng Struct, 252, 2022, 113418, 10.1016/j.engstruct.2021.113418.
Tan, X., Fang, Z., Xiong, X., Experimental study on group effect of perfobond strip connectors encased in UHPC. Eng Struct, 250, 2022, 113424, 10.1016/j.engstruct.2021.113424.
Li, Z., Zhao, C., Shu, Y., Deng, K., Cui, B., Su, Y., Full-scale test and simulation of a PBL anchorage system for suspension bridges. Struct Infrastruct Eng 16:3 (2020), 452–464, 10.1080/15732479.2019.1668027.
Xu, F., Zhang, Z., Wang, D., Wang, H., Application of a perfobond rib shear connector group in a beam–arch hybrid bridge. Struct Eng Int 25:4 (2015), 414–418, 10.2749/101686615X14355644770974.
Yang, K., Gao, L., Zheng, K., Shi, J., Mechanical behavior of a novel steel-concrete joint for long-span arch bridges – Application to Yachi River Bridge. Eng Struct, 265, 2022, 114492, 10.1016/j.engstruct.2022.114492.
Lü, W.-r., Zhu, F., Lu, B.-r., Shi, W.-h., Zhang, J.-z., He, X.-k., Qing, S.-q., Experimental study on shear mechanism of perfobond connectors in wind turbines foundation. Eng Mech 35:7 (2018), 127–138, 10.6052/j.issn.1000-4750.2017.03.0207.
Leng, J., Yang, J., Zhang, Z., Zou, Y., Chen, J., Zhou, J., Experimental and numerical investigations on force transfer mechanism of steel-concrete joint in hybrid girder bridges. Structures 54 (2023), 153–170, 10.1016/j.istruc.2023.04.104.
Zhang, Q., Pei, S., Cheng, Z., Bao, Y., Li, Q., Theoretical and experimental studies of the internal force transfer mechanism of perfobond rib shear connector group. J Bridge Eng, 22(2), 2017, 04016112, 10.1061/(ASCE)BE.1943-5592.0000997.
Sun, L., Liu, Y., Wang, H., Shi, F., Liu, J., Jiang, L., Tensile stiffness of perfobond rib connectors in steel–concrete composite pylon of bridges. Eng Struct, 284, 2023, 115931, 10.1016/j.engstruct.2023.115931.
Cao, Z., Li, Z., Deng, S., Wang, L., Jiang, H., Xian, B., Experimental study on interfacial shear behavior of PBL shear connector deeply embedded in UHPC. Case Stud Constr Mater, 18, 2023, 10.1016/j.cscm.2023.e02192.
Šavor Z. Croatian Bridges designed by Structural Department of Zagreb Civil Engineering Faculty utilizing SOFiSTiK Software. In: Bridges eurasia 2010. 2010.
Goralski, C., Hegger, J., Zusammenwirken von beton und stahlprofil bei kammerbetonierten verbundträgern. 2006, Technische Hochschule Aachen, Aachen.
Wium, J.A., Lebet, J.P., Colonnes mixtes: transfert des forces du profilé métallique au béton d'enrobage. (Ph.D. thesis), 1992, Ecole Polytechnique Fédérale de Lausanne, Lausanne.
Wang, X., Liu, Y., Yang, F., Lu, Y., Li, X., Effect of concrete cover on the bond-slip behavior between steel section and concrete in SRC structures. Constr Build Mater, 229, 2019, 116855, 10.1016/j.conbuildmat.2019.116855.
Roeder, C.W., Bond stress of embedded steel shapes in concrete. Effects of damage and redundancy on structural performance, 1985, ASCE, 227–240.
Huang, Z., Huang, X., Li, W., Chen, C., Li, Y., Lin, Z., Liao, W.-I., Bond-slip behaviour of H-shaped steel embedded in UHPFRC. Steel Compos Struct, 38(5), 2021, 21, 10.12989/scs.2021.38.5.563.
Wang, W., Li, Y., Su, S., Quan, C., Mi, J., Xu, J., Jia, Y., Interfacial bonding stress transfer and failure mechanism between corrugated steel plate and reinforced concrete. Eng Fail Anal, 153, 2023, 107555, 10.1016/j.engfailanal.2023.107555.
Roeder, C.W., Chmielowski, R., Brown, C.B., Shear connector requirements for embedded steel sections. J Struct Eng 125:2 (1999), 142–151, 10.1061/(ASCE)0733-9445(1999)125:2(142).
ANSI/AISC360, C.W., Specification for structural steel buildings: American National Standard ANSI/AISC 360-16., 2016, American Institute of Steel Construction, United States of America.
JGJ138, C.W., Code for design of composite structures: Standard JGJ 138-2016., 2016, Ministry of Housing and Urban-Rural Construction of the People's Republic of China, Beijing.
AS/NZS2327, C.W., Composite structures—Composite steel-concrete construction in buildings: Standard AS/NZS 2327:2017., 2017, Australian/New Zealand Standard, Australia, 272.
AIJ, C.W., Standard for structural calculation of steel reinforced concrete structures: Standard., 1991, Architectural Institure of Japan, Tokyo.
Chrzanowski, M., Shear transfer in heavy steel-concrete composite columns with multiple encased steel profiles. (Ph.D. thesis), 2019, Université du Luxembourg.
Zhang, J., Meng, X., Song, J., Cao, X., Ma, K., Push-out tests of interfacial bond slip between H-shaped steel and ultra-high performance concrete. Structures, 57, 2023, 105268, 10.1016/j.istruc.2023.105268.
Roik, K., Breit, M., Schwalbenhofer, K., Untersuchung der verbundwirkung zwischen stahlprofil und beton bei stützenkonstruktionen: Projekt 51., 1984, Studiengesellschaft füt Anwendungstechnik von Eisen und Stahl e.V., Düsseldorf.
Chrzanowski, M., Odenbreit, C., Obiala, R., Bogdan, T., Degée, H., Transfer of shear stresses at steel-concrete interface: Experimental tests and literature review. Steel Constr 12:1 (2019), 44–54, 10.1002/stco.201800024.
Chen, C.-C., Lin, N.-J., Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns. J Constr Steel Res 62:5 (2006), 424–433, 10.1016/j.jcsr.2005.04.021.
Hawkins, N.M., Strength of concrete-encased steel beams. Inst Eng (Aust) Civ Eng Trans CE15:1–2 (1973), 39–46.
Hamdan, M., Hunaiti, Y., Factors affecting bond strength in composite columns. Proc., 3rd int. conf. on steel-concrete composite structures, 1991, Association for International Cooperation and Research in Steel-Concrete Composites, Fukuoka, Japan, 213–218.
Yoo, D.-Y., Shin, H.-O., Bond performance of steel rebar embedded in 80–180 MPa ultra-high-strength concrete. Cem Concr Compos 93 (2018), 206–217, 10.1016/j.cemconcomp.2018.07.017.
Shen, D., Shi, X., Zhang, H., Duan, X., Jiang, G., Experimental study of early-age bond behavior between high strength concrete and steel bars using a pull-out test. Constr Build Mater 113 (2016), 653–663, 10.1016/j.conbuildmat.2016.03.094.
Hunaiti, Y.M., Bond strength in battened composite columns. J Struct Eng 117:3 (1991), 699–714.
Zapfe, C., Trag- und verformungsverhalten von verbundträgern mit betondübeln zur übertragung der längsschubkräfte. (Ph.D. thesis), 2001, Universität der Bundeswehr München, München.
Kraus, D., Wurzer, O., Bearing capacity of concrete dowels. Composite construction - conventional and innovative, 1997, IABSE, 133–138, 10.5169/SEALS-957.
Hosseinpour, E., Push-out test on the web opening shear connector for a slim-floor steel beam - Experimental and analytical study. Eng Struct, 2018, 16, 10.1016/j.engstruct.2018.02.047.
Kang, J.Y., Park, J.S., Jung, W.T., Keum, M.S., Evaluation of the shear strength of perfobond rib connectors in ultra high performance concrete. Engineering 06:13 (2014), 989–999, 10.4236/eng.2014.613089.
Su, Q.-T., Wang, W., Luan, H.-W., Yang, G.-T., Experimental research on bearing mechanism of perfobond rib shear connectors. J Constr Steel Res 95 (2014), 22–31, 10.1016/j.jcsr.2013.11.020.
Zheng, S., Liu, Y., Yoda, T., Lin, W., Parametric study on shear capacity of circular-hole and long-hole perfobond shear connector. J Constr Steel Res 117 (2016), 64–80, 10.1016/j.jcsr.2015.09.012.
Schäfer, M., Zum tragverhalten von flachdecken mit integrierten hohlkastenförmigen stahlprofilen. (Ph.D. thesis), 2007, Bergische Universität Wuppertal, Wuppertal, Germany.
Roberts, W., Heywood, R., Development and testing of a new shear connector for steel concrete composite bridges. Fourth international bridge engineering conference, 1995, National Academy Press, Washington, DC, 137–145.
Zheng, S., Liu, Y., Yoda, T., Lin, W., Shear behavior and analytical model of perfobond connectors. Steel Compos Struct 20:1 (2016), 71–89, 10.12989/SCS.2016.20.1.071.
Liu, Y., Yang, H., Luan, L., Liu, Y., Du, X., Shear performance and failure process of perfobond connector in steel-UHPC composite structures. Structures 50 (2023), 1461–1475, 10.1016/j.istruc.2023.02.106.
Braun, M., Obiala, R., Odenbreit, C., Analyses of the loadbearing behaviour of deep-embedded concrete dowels, CoSFB: Analyses of the loadbearing behaviour of deep-embedded concrete dowels, CoSFB. Steel Constr 8:3 (2015), 167–173, 10.1002/stco.201510024.
Ushijima, Y., Hosaka, T., Kaoru, M., Hiroshi, W., Yoshihiro, T., Hirokazu, H., An experimental study on shear characteristics of perfobond strip and its rational strength equations. International symposium on connections between steel and concrete, 2001, RILEM Publications, 1066–1075.
Vianna, J., Costa-Neves, L., Vellasco, P.S., de Andrade, S., Structural behaviour of T-Perfobond shear connectors in composite girders: An experimental approach. Eng Struct 30:9 (2008), 2381–2391, 10.1016/j.engstruct.2008.01.015.
Verissimo, G., Oliveira, A., Fakury, R., Rodrigues, F., Paes, J., Valente, I., Cruz, P., Avaliação do desempenho de um conector de cisalhamento em chapa dentada para estruturas mistas de aço e concreto. Congresso de métodos numéricos em engenharia, 2007, Universidade do Porto, Porto, Portugal.
He, S., Fang, Z., Mosallam, A.S., Push-out tests for perfobond strip connectors with UHPC grout in the joints of steel-concrete hybrid bridge girders. Eng Struct 135 (2017), 177–190, 10.1016/j.engstruct.2017.01.008.
Wang, W., Zhao, C., Li, Q., Zhuang, W., Study on load-slip characteristic curves of perfobond shear connectors in hybrid structures. J Adv Concr Technol 12:10 (2014), 413–424, 10.3151/jact.12.413.
Paoletti, M., Schäfer, M., Load transfer of circular reinforced composite dowel connector: a comparison of existing analytical equations. 10th European conference on steel and composite structures, 2023, Ernst und Sohn, Amsterdam, Nederlands, 101–106, 10.1002/cepa.2613.
Li, Z., Zhao, C., Deng, K., Wang, W., Load sharing and slip distribution in multiple holes of a perfobond rib shear connector. J Struct Eng, 144(9), 2018, 04018147, 10.1061/(ASCE)ST.1943-541X.0002152.
Zou, Y., Zheng, K., Zhou, J., Zhang, Z., Li, X., Mechanical behavior of perfobond connector group in steel–concrete joint of hybrid bridge. Structures 30 (2021), 925–936, 10.1016/j.istruc.2021.01.046.
He, S., Guan, P., Wang, Q., Fang, Z., Mosallam, A., Investigation on structural performance of perfobond strip connector group in steel-concrete joints. Eng Struct, 242, 2021, 112571, 10.1016/j.engstruct.2021.112571.
Zhang, Q., Jia, D., Bao, Y., Cheng, Z., Bu, Y., Li, Q., Analytical study on internal force transfer of perfobond rib shear connector group using a nonlinear spring model. J Bridge Eng, 22(10), 2017, 04017081, 10.1061/(ASCE)BE.1943-5592.0001123.
Morikawa, H., Itoh, N., Morimoto, A., Abe, Y., Experimental study on connecting structure for the Tsurumi Fairy Bridge. Jpn J Struct Eng A 39 (1993), 1335–1346.
Ye, M., Luo, R., Study of shear force of steel-concrete composite with a large number of closely arranged studs. Steel Constr 14:3 (1999), 39–42.
Zeng, M.-g., Su, Q.-t., Wu, C., Shear force distribution of welded studs in anchorage zone of steel and concrete composite pylon of cable-stayed bridge. Bridge Constr 4 (2008), 27–30.
Braun, M.V., Investigation of the load-bearing behaviour of CoSFB-dowels. (Ph.D. thesis), 2018, University of Luxembourg, Luxembourg, Luxembourg.