Health (social science); socioeconomic inequalities; social determinants of health; cognitive functioning; structural brain damage; brain connectivity; early-life socioeconomic status; causal mediation analysis; population health
Abstract :
[en] [en] BACKGROUND: Socioeconomic inequalities in cognitive impairment may partly act through structural brain damage and reduced connectivity. This study investigated the extent to which the association of early-life socioeconomic position (SEP) with later-life cognitive functioning is mediated by later-life SEP, and whether the associations of SEP with later-life cognitive functioning can be explained by structural brain damage and connectivity.
METHODS: We used cross-sectional data from the Dutch population-based Maastricht Study (n = 4,839; mean age 59.2 ± 8.7 years, 49.8% women). Early-life SEP was assessed by self-reported poverty during childhood and parental education. Later-life SEP included education, occupation, and current household income. Participants underwent cognitive testing and 3-T magnetic resonance imaging to measure volumes of white matter hyperintensities, grey matter, white matter, cerebrospinal fluid, and structural connectivity. Multiple linear regression analyses tested the associations between SEP, markers of structural brain damage and connectivity, and cognitive functioning. Mediation was tested using structural equation modeling.
RESULTS: Although there were direct associations between both indicators of SEP and later-life cognitive functioning, a large part of the association between early-life SEP and later-life cognitive functioning was explained by later-life SEP (72.2%). The extent to which structural brain damage or connectivity acted as mediators between SEP and cognitive functioning was small (up to 5.9%).
CONCLUSIONS: We observed substantial SEP differences in later-life cognitive functioning. Associations of structural brain damage and connectivity with cognitive functioning were relatively small, and only marginally explained the SEP gradients in cognitive functioning.
Research center :
Integrative Research Unit: Social and Individual Development (INSIDE) > PEARL Institute for Research on Socio-Economic Inequality (IRSEI)
Disciplines :
Public health, health care sciences & services Neurology Sociology & social sciences
Author, co-author :
GERAETS, Anouk ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC) > Socio-Economic Inequality
Schram, Miranda T ; Department of Psychiatry and Neuropsychology, Maastricht, The Netherlands, Department of Internal Medicine, Maastricht, The Netherlands, Heart and Vascular Centre, Maastricht, The Netherlands, School for Mental Health and Neuroscience (MHeNs), Maastricht, The Netherlands, School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
Jansen, Jacobus F A ; School for Mental Health and Neuroscience (MHeNs), Maastricht, The Netherlands, Department of Radiology, Maastricht, The Netherlands
Köhler, Sebastian; Department of Psychiatry and Neuropsychology, Maastricht, The Netherlands, School for Mental Health and Neuroscience (MHeNs), Maastricht, The Netherlands, Alzheimer Centrum Limburg, Maastricht, The Netherlands
van Boxtel, Martin P J; Department of Psychiatry and Neuropsychology, Maastricht, The Netherlands, School for Mental Health and Neuroscience (MHeNs), Maastricht, The Netherlands, Alzheimer Centrum Limburg, Maastricht, The Netherlands
Eussen, Simone J P M ; School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands, Department of Epidemiology, Maastricht, The Netherlands, Care and Public Health Research Institute (CAPHRI), Maastricht, The Netherlands
Koster, Annemarie ; Care and Public Health Research Institute (CAPHRI), Maastricht, The Netherlands, Department of Social Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
Stehouwer, Coen D A; Department of Internal Medicine, Maastricht, The Netherlands, School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
Bosma, Hans ; Care and Public Health Research Institute (CAPHRI), Maastricht, The Netherlands, Department of Social Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
LEIST, Anja ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC) > Socio-Economic Inequality
External co-authors :
yes
Language :
English
Title :
The associations of socioeconomic position with structural brain damage and connectivity and cognitive functioning: The Maastricht Study.
Publication date :
10 July 2024
Journal title :
Social Science and Medicine
ISSN :
0277-9536
eISSN :
1873-5347
Publisher :
Elsevier Ltd, England
Volume :
355
Pages :
117111
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
3. Good health and well-being 10. Reduced inequalities
Aartsen, M.J., Cheval, B., Sieber, S., Van der Linden, B.W., Gabriel, R., Courvoisier, D.S., et al. Advantaged socioeconomic conditions in childhood are associated with higher cognitive functioning but stronger cognitive decline in older age. Proc. Natl. Acad. Sci. USA 116 (2019), 5478–5486, 10.1073/pnas.1807679116.
Barelds, D., Groninger Intelligentie Test 2 (GIT-2): Handleiding. 2004.
Baumgart, M., Snyder, H.M., Carrillo, M.C., Fazio, S., Kim, H., Johns, H., Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimer's Dementia 11 (2015), 718–726, 10.1016/j.jalz.2015.05.016.
Beck, A., Franz, C.E., Xian, H., Vuoksimaa, E., Tu, X., Reynolds, C.A., et al. Mediators of the effect of childhood socioeconomic status on late midlife cognitive abilities: a four decade longitudinal study. Innovation in aging, 2, 2018, igy003, 10.1093/geroni/igy003.
Bookheimer, S.Y., Salat, D.H., Terpstra, M., Ances, B.M., Barch, D.M., Buckner, R.L., et al. The lifespan human connectome project in aging: an overview. Neuroimage 185 (2019), 335–348, 10.1016/j.neuroimage.2018.10.009.
Bullmore, E., Sporns, O., Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10 (2009), 186–198, 10.1038/nrn2575.
Chan, M.Y., Na, J., Agres, P.F., Savalia, N.K., Park, D.C., Wig, G.S., Socioeconomic status moderates age-related differences in the brain's functional network organization and anatomy across the adult lifespan. Proc. Natl. Acad. Sci. USA 115 (2018), E5144–E5153, 10.1073/pnas.1714021115.
Cohen, S., Janicki-Deverts, D., Chen, E., Matthews, K.A., Childhood socioeconomic status and adult health. Ann. N. Y. Acad. Sci. 1186 (2010), 37–55, 10.1111/j.1749-6632.2009.05334.x.
De Boer, R., Vrooman, H.A., Van Der Lijn, F., Vernooij, M.W., Ikram, M.A., Van Der Lugt, A., et al. White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage 45 (2009), 1151–1161, 10.1016/j.neuroimage.2009.01.011.
De Boo, H.A., Harding, J.E., The developmental origins of adult disease (Barker) hypothesis. Aust. N. Z. J. Obstet. Gynaecol. 46 (2006), 4–14, 10.1111/j.1479-828X.2006.00506.x.
De Jong, N.R., Jansen, J.F., van Boxtel, M.P., Schram, M.T., Stehouwer, C.D., Dagnelie, P.C., et al. Cognitive resilience depends on white matter connectivity: the Maastricht Study. Alzheimer's Dementia, 2022, 10.1002/alz.12758.
Derks, I.P., Koster, A., Schram, M.T., Stehouwer, C.D., Dagnelie, P.C., Groffen, D.A., Bosma, H., The association of early life socioeconomic conditions with prediabetes and type 2 diabetes: results from the Maastricht study. Int. J. Equity Health 16 (2017), 1–7, 10.1186/s12939-017-0553-7.
Development, O.f.E.C.-o., Quality Review of the OECD Database on Household Incomes and Poverty and the OECD Earnings Database. 2012, OECD, Paris, France.
Dougherty, R.J., Moonen, J., Yaffe, K., Sidney, S., Davatzikos, C., Habes, M., Launer, L.J., Smoking mediates the relationship between SES and brain volume: the CARDIA study. PLoS One, 15, 2020, e0239548, 10.1371/journal.pone.0239548.
Ford, K.J., Kobayashi, L.C., Leist, A.K., Childhood socioeconomic disadvantage and pathways to memory performance in mid to late adulthood: what matters most?. J. Gerontol.: Ser. Bibliogr., 2022, 10.1093/geronb/gbac075.
Ganzeboom, H.B.G., Treinman, D.J., International Stratification and Mobility File: Conversion Tools. 2019, Department of Social Research Methodology, Amsterdam, The Netherlands.
Geraets, A.F., Leist, A.K., Sex/gender and socioeconomic differences in modifiable risk factors for dementia. Sci. Rep., 13, 2023, 80, 10.1038/s41598-022-27368-4.
Härkönen, J., Lindberg, M., Karlsson, L., Karlsson, H., Scheinin, N.M., Education is the strongest socio-economic predictor of smoking in pregnancy. Addiction 113 (2018), 1117–1126, 10.1111/add.14158.
Harris, S.E., Deary, I.J., The genetics of cognitive ability and cognitive ageing in healthy older people. Trends Cognit. Sci. 15 (2011), 388–394, 10.1016/j.tics.2011.07.004.
Havari, E., Mazzonna, F., Can we trust older people's statements on their childhood circumstances? Evidence from SHARELIFE. Eur. J. Popul. 31 (2015), 233–257, 10.1007/s10680-014-9332-y.
Honningsvåg, L.-M., Linde, M., Håberg, A., Stovner, L.J., Hagen, K., Does health differ between participants and non-participants in the MRI-HUNT study, a population based neuroimaging study? The Nord-Trøndelag health studies 1984–2009. BMC Med. Imag. 12 (2012), 1–9, 10.1186/1471-2342-12-23.
ILO. International Classification of Occupations 2008—Structure, Group Definitions and Correspondence Tables. 2012, ILO, Genova, Switzerland.
Jin, Y., Hong, C., Luo, Y., Sex differences in cognitive aging and the role of socioeconomic status: evidence from multi-cohort studies. Psychiatr. Res., 2023, 115049, 10.1016/j.psychres.2023.115049.
Kweon, H., Aydogan, G., Dagher, A., Bzdok, D., Ruff, C.C., Nave, G., et al. Human brain anatomy reflects separable genetic and environmental components of socioeconomic status. Sci. Adv., 8, 2022, eabm2923, 10.1126/sciadv.abm2923.
Lee, J.H., Genetic evidence for cognitive reserve: variations in memory and related cognitive functions. J. Clin. Exp. Neuropsychol. 25 (2003), 594–613, 10.1076/jcen.25.5.594.14582.
Lorant, V., Demarest, S., Miermans, P.-J., Van Oyen, H., Survey error in measuring socio-economic risk factors of health status: a comparison of a survey and a census. Int. J. Epidemiol. 36 (2007), 1292–1299, 10.1093/ije/dym191.
Lövdén, M., Fratiglioni, L., Glymour, M.M., Lindenberger, U., Tucker-Drob, E.M., Education and cognitive functioning across the life span. Psychol. Sci. Publ. Interest 21 (2020), 6–41, 10.1177/1529100620920576.
Tucker, M., Stern, Y., Cognitive reserve in aging. Curr. Alzheimer Res. 8 (2011), 354–360, 10.2174/156720511795745320.
Mattson, M.P., Arumugam, T.V., Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metabol. 27 (2018), 1176–1199, 10.1016/j.cmet.2018.05.011.
McElroy, E., Richards, M., Fitzsimons, E., Conti, G., Ploubidis, G.B., Sullivan, A., Moulton, V., Influence of childhood socioeconomic position and ability on mid-life cognitive function: evidence from three British birth cohorts. J. Epidemiol. Community Health 75 (2021), 643–650, 10.1136/jech-2020-215637.
Murray, A.D., McNeil, C.J., Salarirad, S., Whalley, L.J., Staff, R.T., Early life socioeconomic circumstance and late life brain hyperintensities–a population based cohort study. PLoS One, 9, 2014, e88969, 10.1371/journal.pone.0088969.
Muscatell, K.A., Brosso, S.N., Humphreys, K.L., Socioeconomic status and inflammation: a meta-analysis. Mol. Psychiatr. 25 (2020), 2189–2199, 10.1038/s41380-018-0259-2.
Peterson, R.L., George, K.M., Gilsanz, P., Mayeda, E.R., Glymour, M.M., Meyer, O.L., et al. Lifecourse socioeconomic changes and late-life cognition in a cohort of US-born and US immigrants: findings from the KHANDLE study. BMC Publ. Health, 21, 2021, 920, 10.1186/s12889-021-10976-6.
Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., et al. Brain atrophy in Alzheimer's disease and aging. Ageing Res. Rev. 30 (2016), 25–48, 10.1016/j.arr.2016.01.002.
Raz, N., Rodrigue, K.M., Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 30 (2006), 730–748, 10.1016/j.neubiorev.2006.07.001.
Rensma, S.P., van Sloten, T.T., Launer, L.J., Stehouwer, C.D., Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 90 (2018), 164–173, 10.1016/j.neubiorev.2018.04.003.
Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N., Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 122 (2015), 1–5, 10.1016/j.neuroimage.2015.07.075.
Rubinov, M., Sporns, O., Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52 (2010), 1059–1069, 10.1016/j.neuroimage.2009.10.003.
Schram, M.T., Sep, S.J.S., van der Kallen, C.J., Dagnelie, P.C., Koster, A., Schaper, N., et al. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur. J. Epidemiol. 29 (2014), 439–451, 10.1007/s10654-014-9889-0.
Schultz, W.M., Kelli, H.M., Lisko, J.C., Varghese, T., Shen, J., Sandesara, P., et al. Socioeconomic status and cardiovascular outcomes: challenges and interventions. Circulation 137 (2018), 2166–2178, 10.1161/CIRCULATIONAHA.117.029652.
Serra, L., Mancini, M., Cercignani, M., Di Domenico, C., Spanò, B., Giulietti, G., et al. Network-based substrate of cognitive reserve in Alzheimer's disease. J. Alzheim. Dis. 55 (2017), 421–430, 10.3233/JAD-160735.
Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., et al. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatr. 59 (1998), 22–33.
Somerville, L.H., Bookheimer, S.Y., Buckner, R.L., Burgess, G.C., Curtiss, S.W., Dapretto, M., et al. The Lifespan Human Connectome Project in Development: a large-scale study of brain connectivity development in 5–21 year olds. Neuroimage 183 (2018), 456–468, 10.1016/j.neuroimage.2018.08.050.
Sporns, O., The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224 (2011), 109–125, 10.1111/j.1749-6632.2010.05888.x.
Sporns, O., Graph theory methods: applications in brain networks. Dialogues Clin. Neurosci. 20 (2018), 111–121, 10.31887/DCNS.2018.20.2/osporns.
Stern, Y., An approach to studying the neural correlates of reserve. Brain imaging and behavior 11 (2017), 410–416, 10.1007/s11682-016-9566-x.
Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R., Zlokovic, B.V., Blood-brain barrier: from physiology to disease and back. Physiol. Rev., 2018, 10.1152/physrev.00050.2017.
Van Der Elst, W., Van Boxtel, M.P., Van Breukelen, G.J., Jolles, J., Rey's verbal learning test: normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education, and mode of presentation. J. Int. Neuropsychol. Soc. 11 (2005), 290–302, 10.1017/S1355617705050344.
Van der Elst, W., Van Boxtel, M.P., Van Breukelen, G.J., Jolles, J., The concept shifting test: adult normative data. Psychol. Assess., 18, 2006, 424, 10.1037/1040-3590.18.4.424.
Van der Elst, W., van Boxtel, M.P., van Breukelen, G.J., Jolles, J., The Letter Digit Substitution Test: normative data for 1,858 healthy participants aged 24–81 from the Maastricht Aging Study (MAAS): influence of age, education, and sex. J. Clin. Exp. Neuropsychol. 28 (2006), 998–1009, 10.1080/13803390591004428.
Van der Elst, W., Van Boxtel, M.P., Van Breukelen, G.J., Jolles, J., The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment 13 (2006), 62–79, 10.1177/1073191105283427.
Vrooman, H.A., Cocosco, C.A., van der Lijn, F., Stokking, R., Ikram, M.A., Vernooij, M.W., et al. Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification. Neuroimage 37 (2007), 71–81, 10.1016/j.neuroimage.2007.05.018.
Waldstein, S.R., Dore, G.A., Davatzikos, C., Katzel, L.I., Gullapalli, R., Seliger, S.L., et al. Differential associations of socioeconomic status with global brain volumes and white matter lesions in African American and white adults: the HANDLS SCAN study. Psychosom. Med., 79, 2017, 327, 10.1097/PSY.0000000000000408.
Wang, A.-Y., Hu, H.-Y., Ou, Y.-N., Wang, Z.-T., Ma, Y.-H., Tan, L., Yu, J.-T., Socioeconomic status and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 39 prospective studies. The Journal of Prevention of Alzheimer's Disease 10 (2023), 83–94, 10.14283/jpad.2022.81.
Wang, T., Li, Y., Zheng, X., Association of socioeconomic status with cardiovascular disease and cardiovascular risk factors: a systematic review and meta-analysis. J. Publ. Health 32 (2024), 385–399, 10.1007/s10389-023-01825-4.
Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12 (2013), 822–838, 10.1016/S1474-4422(13)70124-8.
Whalley, L.J., Deary, I.J., Appleton, C.L., Starr, J.M., Cognitive reserve and the neurobiology of cognitive aging. Ageing Res. Rev. 3 (2004), 369–382, 10.1016/j.arr.2004.05.001.
Whalley, L.J., Dick, F.D., McNeill, G., A life-course approach to the aetiology of late-onset dementias. Lancet Neurol. 5 (2006), 87–96, 10.1016/S1474-4422(05)70286-6.
Wolfova, K., Csajbok, Z., Kagstrom, A., Kåreholt, I., Cermakova, P., Role of sex in the association between childhood socioeconomic position and cognitive ageing in later life. Sci. Rep. 11 (2021), 1–12, 10.1038/s41598-021-84022-1.