Abstract :
[en] We study many-valued coalgebraic logics with semi-primal algebras of
truth-degrees. We provide a systematic way to lift endofunctors defined on the
variety of Boolean algebras to endofunctors on the variety generated by a
semi-primal algebra. We show that this can be extended to a technique to lift
classical coalgebraic logics to many-valued ones, and that (one-step)
completeness and expressivity are preserved under this lifting. For specific
classes of endofunctors, we also describe how to obtain an axiomatization of
the lifted many-valued logic directly from an axiomatization of the original
classical one. In particular, we apply all of these techniques to classical
modal logic.
Scopus citations®
without self-citations
0