Ab initio calculations; Defect state; Defects in solids; Deterministics; Quantum technologies; Spin configurations; Physics - Materials Science; Quantum Physics
Résumé :
[en] Although point defects in solids can be used as qubits, it remains challenging to position them in a deterministic array. By means of advanced ab initio calculations we show that perfect screw dislocations in 3C-SiC could be used to overcome this limitation. In addition, we show that such dislocations can change the spin configuration of a point defect located inside its core, without changing the localized nature of its defect states. Our findings represent a technological leap as they show that dislocations can be used as active building blocks in future defect-based quantum computers.
Disciplines :
Physique
Auteur, co-auteur :
Barragan-Yani, Daniel ; Unilu - University of Luxembourg [LU] > Department of Physics and Materials Science
WIRTZ, Ludger ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Assessing the potential of perfect screw dislocations in SiC for solid-state quantum technologies
H2020 - 898860 - Q-Line - Line defects as building blocks of a defect-based quantum computer
Organisme subsidiant :
H2020 Marie Skłodowska-Curie Actions Union Européenne
Subventionnement (détails) :
We acknowledge that this project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie Grant Agreement No. 898860. Furthermore, the authors gratefully acknowledge the computing time granted by the HPC facilities of the University of Luxembourg and the HRZ (Lichtenberg-Cluster) at TU Darmstadt.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010).
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, Quantum computers, Nature (London) 464, 45 (2010) 0028-0836 10.1038/nature08812.
F. Flamini, N. Spagnolo, and F. Sciarrino, Photonic quantum information processing: A review, Rep. Prog. Phys. 82, 016001 (2019) 0034-4885 10.1088/1361-6633/aad5b2.
S. Slussarenko and G. J. Pryde, Photonic quantum information processing: A concise review, Appl. Phys. Rev. 6, 041303 (2019) 1931-9401 10.1063/1.5115814.
H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with trapped ions, Phys. Rep. 469, 155 (2008) 0370-1573 10.1016/j.physrep.2008.09.003.
C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Trapped-ion quantum computing: Progress and challenges, Appl. Phys. Rev. 6, 021314 (2019) 1931-9401 10.1063/1.5088164.
A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science 276, 2012 (1997) 0036-8075 10.1126/science.276.5321.2012.
G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater. 8, 383 (2009) 1476-1122 10.1038/nmat2420.
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy colour centre in diamond, Phys. Rep. 528, 1 (2013) 0370-1573 10.1016/j.physrep.2013.02.001.
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, Material platforms for defect qubits and single-photon emitters, Appl. Phys. Rev. 7, 031308 (2020) 1931-9401 10.1063/5.0006075.
A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon, and F. Kuemmeth, Semiconductor qubits in practice, Nat. Rev. Phys. 3, 157 (2021) 2522-5820 10.1038/s42254-021-00283-9.
G. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai, H. Seo, A. Gali, G. Galli, and D. D. Awschalom, Quantum guidelines for solid-state spin defects, Nat. Rev. Mater. 6, 906 (2021) 2058-8437 10.1038/s41578-021-00306-y.
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, Designing defect spins for wafer-scale quantum technologies, MRS Bull. 40, 1146 (2015) 0883-7694 10.1557/mrs.2015.266.
M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, Material platforms for spin-based photonic quantum technologies, Nat. Rev. Mater. 3, 38 (2018) 2058-8437 10.1038/s41578-018-0008-9.
T. Schröder, M. E. Trusheim, M. Walsh, L. Li, J. Zheng, M. Schukraft, A. Sipahigil, R. E. Evans, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, R. M. Camacho, E. S. Bielejec, M. D. Lukin, and D. Englund, Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures, Nat. Commun. 8, 15376 (2017) 10.1038/ncomms15376.
J. Wang, Y. Zhou, X. Zhang, F. Liu, Y. Li, K. Li, Z. Liu, G. Wang, and W. Gao, Efficient generation of an array of single silicon-vacancy defects in silicon carbide, Phys. Rev. Appl. 7, 064021 (2017) 2331-7019 10.1103/PhysRevApplied.7.064021.
Y. Zhou, Z. Mu, G. Adamo, S. Bauerdick, A. Rudzinski, I. Aharonovich, and W. bo Gao, Direct writing of single germanium vacancy center arrays in diamond, New J. Phys. 20, 125004 (2018) 1367-2630 10.1088/1367-2630/aaf2ac.
Y.-C. Chen, B. Griffiths, L. Weng, S. S. Nicley, S. N. Ishmael, Y. Lekhai, S. Johnson, C. J. Stephen, B. L. Green, G. W. Morley, M. E. Newton, M. J. Booth, P. S. Salter, and J. M. Smith, Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield, Optica 6, 662 (2019) 2334-2536 10.1364/OPTICA.6.000662.
J. M. Smith, S. A. Meynell, A. C. Bleszynski Jayich, and J. Meijer, Colour centre generation in diamond for quantum technologies, Nanophotonics 8, 1889 (2019) 2192-8614 10.1515/nanoph-2019-0196.
S. Castelletto and A. Boretti, Silicon carbide color centers for quantum applications, J. Phys.: Photonics 2, 022001 (2020) 2515-7647 10.1088/2515-7647/ab77a2.
S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, Strain-induced spatial and spectral isolation of quantum emitters in mono-and bilayer (Equation presented), Nano Lett. 15, 7567 (2015) 1530-6984 10.1021/acs.nanolett.5b03312.
A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor, Nat. Commun. 8, 15053 (2017) 2041-1723 10.1038/ncomms15053.
J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Quantum computing with defects, Proc. Natl. Acad. Sci. USA 107, 8513 (2010) 0027-8424 10.1073/pnas.1003052107.
P. C. E. Stamp and A. Gaita-Ariño, Spin-based quantum computers made by chemistry: Hows and whys, J. Mater. Chem. 19, 1718 (2009) 0959-9428 10.1039/B811778K.
L. C. Bassett, A. Alkauskas, A. L. Exarhos, and K.-M. C. Fu, Quantum defects by design, Nanophotonics 8, 1867 (2019) 2192-8614 10.1515/nanoph-2019-0211.
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-P. Chou, and A. Gali, Proper surface termination for luminescent near-surface NV centers in diamond, Nano Lett. 14, 4772 (2014) 1530-6984 10.1021/nl501927y.
J.-P. Chou and A. Gali, Nitrogen-vacancy diamond sensor: novel diamond surfaces from ab initio simulations, MRS Commun. 7, 551 (2017) 2159-6859 10.1557/mrc.2017.75.
J.-P. Chou, A. Retzker, and A. Gali, Nitrogen-terminated diamond (111) surface for room-temperature quantum sensing and simulation, Nano Lett. 17, 2294 (2017) 1530-6984 10.1021/acs.nanolett.6b05023.
A. Stacey, N. Dontschuk, J.-P. Chou, D. A. Broadway, A. K. Schenk, M. J. Sear, J.-P. Tetienne, A. Hoffman, S. Prawer, C. I. Pakes, A. Tadich, N. P. de Leon, A. Gali, and L. C. L. Hollenberg, Evidence for primal (Equation presented) defects at the diamond surface: Candidates for electron trapping and noise sources, Adv. Mater. Inter. 6, 1801449 (2019) 2196-7350 10.1002/admi.201801449.
S. Sangtawesin, B. L. Dwyer, S. Srinivasan, J. J. Allred, L. V. H. Rodgers, K. De Greve, A. Stacey, N. Dontschuk, K. M. O'Donnell, D. Hu, D. A. Evans, C. Jaye, D. A. Fischer, M. L. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and N. P. de Leon, Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy, Phys. Rev. X 9, 031052 (2019) 2160-3308 10.1103/PhysRevX.9.031052.
S. Li, J.-P. Chou, J. Wei, M. Sun, A. Hu, and A. Gali, Oxygenated (113) diamond surface for nitrogen-vacancy quantum sensors with preferential alignment and long coherence time from first principles, Carbon 145, 273 (2019) 0008-6223 10.1016/j.carbon.2019.01.016.
W. Shen, S. Shen, S. Liu, H. Li, Z. Gan, and Q. Zhang, Monolayer cubic boron nitride terminated diamond (111) surfaces for quantum sensing and electron emission applications, ACS Appl. Mater. Interfaces 12, 33336 (2020) 1944-8244 10.1021/acsami.0c05268.
W. Körner, D. F. Urban, and C. Elsässer, Influence of extended defects on the formation energy, hyperfine structure, and zero-field splitting of NV centers in diamond, Phys. Rev. B 103, 085305 (2021) 2469-9950 10.1103/PhysRevB.103.085305.
W. Körner, R. Ghassemizadeh, D. F. Urban, and C. Elsässer, Influence of (N,H)-terminated surfaces on stability, hyperfine structure, and zero-field splitting of NV centers in diamond, Phys. Rev. B 105, 085305 (2022) 2469-9950 10.1103/PhysRevB.105.085305.
R. Löfgren, S. Öberg, and J. A. Larsson, The diamond NV-center transition energies in the vicinity of an intrinsic stacking fault, AIP Adv. 12, 035009 (2022) 2158-3226 10.1063/5.0080096.
B. L. Dwyer, L. V. H. Rodgers, E. K. Urbach, D. Bluvstein, S. Sangtawesin, H. Zhou, Y. Nassab, M. Fitzpatrick, Z. Yuan, K. De Greve, E. L. Peterson, H. Knowles, T. Sumarac, J.-P. Chou, A. Gali, V. V. Dobrovitski, M. D. Lukin, and N. P. de Leon, Probing spin dynamics on diamond surfaces using a single quantum sensor, PRX Quantum 3, 040328 (2022) 2691-3399 10.1103/PRXQuantum.3.040328.
V. Ivády, J. Davidsson, N. Delegan, A. L. Falk, P. V. Klimov, S. J. Whiteley, S. O. Hruszkewycz, M. V. Holt, F. J. Heremans, N. T. Son, D. D. Awschalom, I. A. Abrikosov, and A. Gali, Stabilization of point-defect spin qubits by quantum wells, Nat. Commun. 10, 5607 (2019) 10.1038/s41467-019-13495-6.
A. Stukowski, Visualization and analysis of atomistic simulation data with ovito-the open visualization tool, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010) 0965-0393 10.1088/0965-0393/18/1/015012.
D. B. Holt and B. G. Yacobi, Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures (Cambridge University Press, Cambridge, 2007).
D. Hull and D. J. Bacon, Introduction to Dislocations, Materials science and technology (Elsevier Science, Oxford, 2011).
W. Cai, W. D. Nix, and M. R. Society, Imperfections in Crystalline Solids, MRS-Cambridge Materials Fundamentals (Cambridge University Press, Cambridge, 2016).
P. M. Anderson, J. P. Hirth, and J. Lothe, Theory of Dislocations (Cambridge University Press, Cambridge, 2017).
R. Ghassemizadeh, W. Körner, D. F. Urban, and C. Elsässer, Stability and electronic structure of NV centers at dislocation cores in diamond, Phys. Rev. B 106, 174111 (2022) 2469-9950 10.1103/PhysRevB.106.174111.
M. Reiche, M. Kittler, D. Buca, A. Hähnel, Q.-T. Zhao, S. Mantl, and U. Gösele, Dislocation-based Si-nanodevices, Jpn. J. Appl. Phys. 49, 04DJ02 (2010) 0021-4922 10.1143/JJAP.49.04DJ02.
M. Reiche, M. Kittler, W. Erfurth, E. Pippel, K. Sklarek, H. Blumtritt, A. Haehnel, and H. Uebensee, On the electronic properties of a single dislocation, J. Appl. Phys. 115, 194303 (2014) 0021-8979 10.1063/1.4876265.
S. Kondo, T. Mitsuma, N. Shibata, and Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries, Sci. Adv. 2, e1501926 (2016) 2375-2548 10.1126/sciadv.1501926.
H. Bishara, H. Tsybenko, S. Nandy, Q. K. Muhammad, T. Frömling, X. Fang, J. P. Best, and G. Dehm, Dislocation-enhanced electrical conductivity in rutile (Equation presented) accessed by room-temperature nanoindentation, Scr. Mater. 212, 114543 (2022) 1359-6462 10.1016/j.scriptamat.2022.114543.
L. Pizzagalli, P. Beauchamp, and J. Rabier, Stability of undissociated screw dislocations in zinc-blende covalent materials from first-principle simulations, Europhys. Lett. 72, 410 (2005) 0295-5075 10.1209/epl/i2005-10259-y.
J.-L. Demenet, M. Amer, C. Tromas, D. Eyidi, and J. Rabier, Dislocations in 4H-and 3C-SiC single crystals in the brittle regime, Phys. Status Solidi C 10, 64 (2013) 1862-6351 10.1002/pssc.201200372.
L. Pizzagalli, Stability and mobility of screw dislocations in 4h, 2H and 3C silicon carbide, Acta Mater. 78, 236 (2014) 1359-6454 10.1016/j.actamat.2014.06.053.
D. J. Christle, P. V. Klimov, C. F. de las Casas, K. Szász, V. Ivády, V. Jokubavicius, J. Ul Hassan, M. Syväjärvi, W. F. Koehl, T. Ohshima, N. T. Son, E. Janzén, Á. Gali, and D. D. Awschalom, Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface, Phys. Rev. X 7, 021046 (2017) 2160-3308 10.1103/PhysRevX.7.021046.
N. T. Son, C. P. Anderson, A. Bourassa, K. C. Miao, C. Babin, M. Widmann, M. Niethammer, J. Ul Hassan, N. Morioka, I. G. Ivanov, F. Kaiser, J. Wrachtrup, and D. D. Awschalom, Developing silicon carbide for quantum spintronics, Appl. Phys. Lett. 116, 190501 (2020) 0003-6951 10.1063/5.0004454.
S. Wang, Lattice Engineering: Technology and Applications (Pan Stanford, Singapore, 2012).
V. Bulatov and W. Cai, Computer Simulations of Dislocations, OSMM (OUP Oxford, Oxford, 2006).
D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, and F. Willaime, Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater. 124, 633 (2017) 1359-6454 10.1016/j.actamat.2016.09.049.
E. Clouet, Ab initio models of dislocations, in Handbook of Materials Modeling: Methods: Theory and Modeling, edited by W. Andreoni and S. Yip (Springer International Publishing, Cham, Switzerland, 2020), pp. 1503-1524.
E. Clouet, Babel package. Available online at URL http://emmanuel.clouet.free.fr/Programs/Babel/.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L022055 for details about the used supercells containing the dislocation dipoles, the charge transfer between the DV and the dislocation, examples of configurations of the DV located near the screw dislocation but outside its core, and the coordination analysis of the dislocated supercell.
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996) 0163-1829 10.1103/PhysRevB.54.11169.
Z. Li and R. C. Bradt, Thermal expansion of the cubic (3C) polytype of SiC, J. Mater. Sci. 21, 4366 (1986) 0022-2461 10.1007/BF01106557.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118, 8207 (2003) 0021-9606 10.1063/1.1564060.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: "hybrid functionals based on a screened coulomb potential" [j. chem. phys. 118, 8207 (2003)], J. Chem. Phys. 124, 219906 (2006) 0021-9606 10.1063/1.2204597.
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, First-principles calculations for point defects in solids, Rev. Mod. Phys. 86, 253 (2014) 0034-6861 10.1103/RevModPhys.86.253.
H.-P. Komsa, T. T. Rantala, and A. Pasquarello, Finite-size supercell correction schemes for charged defect calculations, Phys. Rev. B 86, 045112 (2012) 1098-0121 10.1103/PhysRevB.86.045112.
C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Fully ab initio finite-size corrections for charged-defect supercell calculations, Phys. Rev. Lett. 102, 016402 (2009) 0031-9007 10.1103/PhysRevLett.102.016402.
K. Momma and F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr 44, 1272 (2011) 0021-8898 10.1107/S0021889811038970.
L. Gordon, A. Janotti, and C. G. Van de Walle, Defects as qubits in 3C-and 4H-SiC, Phys. Rev. B 92, 045208 (2015) 1098-0121 10.1103/PhysRevB.92.045208.
P. A. Schultz, R. M. Van Ginhoven, and A. H. Edwards, Theoretical study of intrinsic defects in cubic silicon carbide (Equation presented)-SiC, Phys. Rev. B 103, 195202 (2021) 2469-9950 10.1103/PhysRevB.103.195202.
S. M. Lee, M. A. Belkhir, X. Y. Zhu, Y. H. Lee, Y. G. Hwang, and T. Frauenheim, Electronic structures of GaN edge dislocations, Phys. Rev. B 61, 16033 (2000) 0163-1829 10.1103/PhysRevB.61.16033.
D. Barragan-Yani and K. Albe, Atomic and electronic structure of perfect dislocations in the solar absorber materials (Equation presented) and (Equation presented) studied by first-principles calculations, Phys. Rev. B 95, 115203 (2017) 2469-9950 10.1103/PhysRevB.95.115203.
U. Aschauer and N. A. Spaldin, Interplay between strain, defect charge state, and functionality in complex oxides, Appl. Phys. Lett. 109, 031901 (2016) 0003-6951 10.1063/1.4958716.
E. Simsek Sanli, D. Barragan-Yani, Q. M. Ramasse, K. Albe, R. Mainz, D. Abou-Ras, A. Weber, H.-J. Kleebe, and P. A. van Aken, Point defect segregation and its role in the detrimental nature of Frank partials in Cu(In,Ga) (Equation presented) thin-film absorbers, Phys. Rev. B 95, 195209 (2017) 2469-9950 10.1103/PhysRevB.95.195209.
A. Csóré, N. Mukesh, G. Károlyházy, D. Beke, and A. Gali, Photoluminescence spectrum of divacancy in porous and nanocrystalline cubic silicon carbide, J. Appl. Phys. 131, 071102 (2022) 0021-8979 10.1063/5.0080514.
W. Gao, F. H. da Jornada, M. Del Ben, J. Deslippe, S. G. Louie, and J. R. Chelikowsky, Quasiparticle energies and optical excitations of 3C-SiC divacancy from (Equation presented) and (Equation presented) plus bethe-salpeter equation calculations, Phys. Rev. Mater. 6, 036201 (2022) 2475-9953 10.1103/PhysRevMaterials.6.036201.