Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Preprocessing is What You Need: Understanding and Predicting the Complexity of SAT-based Uniform Random Sampling
ZEYEN, Olivier; CORDY, Maxime; Perrouin, Gilles et al.
2024In Proceedings - 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering, FormaliSE 2024
Peer reviewed
 

Documents


Texte intégral
FormaliSE2024_UnderstandingSATScalability-2.pdf
Postprint Éditeur (616.08 kB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Boolean formulae; Boolean satisfiability problems; Performance; Random sampling; SAT solvers; SAT-based; Search spaces; Software; Uniform Random Sampling
Résumé :
[en] Despite its NP-completeness, the Boolean satisfiability problem gave birth to highly efficient tools that are able to find solutions to a Boolean formula and compute their number. Boolean formulae compactly encode huge, constrained search spaces for variability-intensive systems, e.g., the possible configurations of the Linux kernel. These search spaces are generally too big to explore exhaustively, leading most testing approaches to sample a few solutions before analysing them. A desirable property of such samples is uniformity: each solution should get the same selection probability. This property motivated the design of uniform random samplers, relying on SAT solvers and counters and achieving different tradeoffs between uniformity and scalability. Though we can observe their performance in practice, understanding the complexity these tools face and accurately predicting it is an under-explored problem. Indeed, structural metrics such as the number of variables and clauses involved in a formula poorly predict the sampling complexity. More elaborated ones, such as minimal independent support (MIS), are intractable to compute on large formulae. We provide an efficient parallel algorithm to compute a related metric, the number of equivalence classes, and demonstrate that this metric is highly correlated to time and memory usage of uniform random sampling and model counting tools. We explore the role of formula preprocessing on various metrics and show its positive influence on correlations. Relying on these correlations, we train an efficient classifier (F1-score 0.97) to predict whether uniformly sampling a given formula will exceed a specified budget. Our results allow us to characterise the similarities and differences between (uniform) sampling, solving and counting. c 2024
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ZEYEN, Olivier  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Perrouin, Gilles ;  PReCISE/NaDI, University of Namur, Belgium
Acher, Mathieu ;  Univ Rennes, Inria, CNRS, IRISA, France
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Preprocessing is What You Need: Understanding and Predicting the Complexity of SAT-based Uniform Random Sampling
Date de publication/diffusion :
14 avril 2024
Nom de la manifestation :
Proceedings of the 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering (FormaliSE)
Lieu de la manifestation :
Lisbon, Prt
Date de la manifestation :
14-04-2024 => 15-04-2024
Titre de l'ouvrage principal :
Proceedings - 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering, FormaliSE 2024
Maison d'édition :
Association for Computing Machinery, Inc
ISBN/EAN :
9798400705892
Peer reviewed :
Peer reviewed
Organisme subsidiant :
Luxembourg National Research Fund (FNR)
Subventionnement (détails) :
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR). Gilles Perrouin is a FNRS Research Associate. Maxime Cordy and Olivier Zeyen are supported by FNR Luxembourg (grants C19/IS/13566661/BEEHIVE/Cordy and AFR Grant 17047437).
Disponible sur ORBilu :
depuis le 10 juillet 2024

Statistiques


Nombre de vues
86 (dont 7 Unilu)
Nombre de téléchargements
33 (dont 2 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu