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ABSTRACT
Despite its NP-completeness, the Boolean satisfiability problem

gave birth to highly efficient tools that are able to find solutions to

a Boolean formula and compute their number. Boolean formulae

compactly encode huge, constrained search spaces for variability-

intensive systems, e.g., the possible configurations of the Linux

kernel. These search spaces are generally too big to explore exhaus-

tively, leading most testing approaches to sample a few solutions

before analysing them. A desirable property of such samples is

uniformity: each solution should get the same selection probability.

This property motivated the design of uniform random samplers, re-

lying on SAT solvers and counters and achieving different tradeoffs

between uniformity and scalability. Though we can observe their

performance in practice, understanding the complexity these tools

face and accurately predicting it is an under-explored problem. In-

deed, structural metrics such as the number of variables and clauses

involved in a formula poorly predict the sampling complexity. More

elaborated ones, such as minimal independent support (MIS), are

intractable to compute on large formulae. We provide an efficient

parallel algorithm to compute a related metric, the number of equiv-
alence classes, and demonstrate that this metric is highly correlated

to time and memory usage of uniform random sampling and model

counting tools. We explore the role of formula preprocessing on

various metrics and show its positive influence on correlations. Re-

lying on these correlations, we train an efficient classifier (F1-score

0.97) to predict whether uniformly sampling a given formula will

exceed a specified budget. Our results allow us to characterise the

similarities and differences between (uniform) sampling, solving

and counting.
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1 INTRODUCTION
Uniform Random Sampling (URS) is a family of techniques to sam-

ple from the set of solutions of a logical formula (often, a Boolean

formula), such that each solution gets the same probability of being

selected. URS is a problem of both theoretical and practical interest.

In particular, when testing configurable systems with hundreds of

options – inducing search spaces one cannot exhaustively explore

– uniform sampling is interesting as we may not know where bugs

are [30, 31, 37]. Other applications include deep learning verifica-

tion, where inputs are drawn from an unknown distribution [5]

or evolutionary algorithms where De Perthuis de Laillevault et al.
theoretically demonstrated the relevance of repeated uniform ran-

dom sampling when initializing populations [12]. Improving URS

thus benefits multiple research fields: SAT solving, software testing,

machine learning, etc.

When evaluating URS techniques (or samplers), two quality cri-

teria matter: uniformity and scalability. Uniformity evaluates how

close the distribution of the sampled solutions is to the uniform

distribution. Scalability refers to the efficiency of the sampler to

produce samples within a specified amount of time, even for large

formulae. Previous studies [37] demonstrated the difficulty for exist-

ing samplers to satisfy both quality criteria. Despite recent improve-

ments [41], state-of-the-art samplers still fail to scale on complex

real-world formulae (representing, e.g., the Linux kernel configura-

tions) without sacrificing uniformity.

Why some formulae are harder to sample uniformly is a poorly
understood problem. A simple but wrong approach to determining

sampling complexity is to count the number of variables and clauses

of formulae. As an example, UniGen3 [41] requires 8 seconds to

produce 10000 samples from the formula blasted_case64 – 96

variables and 299 clauses – and 13.5 seconds for the same number

of samples from the JHipster feature model – 44 variables and 104

clauses. This indicates that these simple metrics do not adequately

characterize the complexity of sampling. While there exist formula

metrics that correlate with the complexity of SAT solving – although
with varying successes [3] – the characteristics that make a formula

easier or harder to sample from remain unknown.

In this paper, we assess and define meaningful metrics for under-

standing and predicting URS difficulty (time and memory consump-

tion). In addition to simple metrics trivially computed from the

formula structure, we consider other studied metrics in the context

of SAT solving (such as the minimal independent support size and

the treewidth). We also provide an efficient algorithm to compute

equivalence classes [9]. To evaluate the relevance of these metrics

This work licensed under Creative Commons Attribution International 4.0 License.
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to assess sampling and solving complexity, we consider two uni-

form random samplers, SPUR [2] and UniGen3 [41], as well as SAT

solvers [11, 14] and a model counter [25]. Motivated by previous

studies showing that the formulae encoding the variability spaces

of configurable systems tend to be harder to uniformly sample than

others [16, 37], we built a diversified dataset of 488 SAT formulae,

128 of which are encoding configurable systems.

Equipped with a set of metrics measured on various formulae, we

measure correlations between these metrics and the performance

of uniform samplers. We demonstrate the existence of strong corre-

lations (Kendall coefficients > 60) between some (combinations of)

metrics and sampling complexity (time and memory consumption).

We also demonstrate the positive role of formula preprocessing, i.e.,
computing independent support for the formulae and applying the

metrics on them, for complexity prediction. Next, we lean on these

results and develop a classification model to predict whether a given

sampling problem (i.e. using a given uniform sampler to sample

from a given formula) is affordable for a given time and memory

budget. We evaluate our model on all our 488 subject formulae and

show that it can achieve at best a classification F1-score of 0.97 and

an AUC-ROC of 0.98.

To summarize, this paper makes the following contributions:

(1) Correlation study.We study the correlation between the

complexity metrics and the computational cost of sampling

(time and memory). We demonstrate a strong correlation

between the number of equivalence classes and sampling

cost.

(2) Prediction. Based on these correlations, we build classifi-

cation models (random forests) that leverage the metrics to

classify formulae according to sampling cost, with F1-score

up to 0.97 and AUC-ROC up to 0.98. We further analyze the

feature importance of these models to increase our trust in

the correlation study.

Open science policy. All our experimentation infrastructure

is available at the following website: https://anonymous.4open.

science/r/eqv_pred-9E64. The repository contains some artifacts

we used to compute the treewidth or the deficiency metrics. The

repository also includes the program to compute the equivalence

classes and some example scripts to generate the files in the data

folder. The data folder contains the resulting CSV files of our exper-

iments. The Python scripts were used to compute the correlations

and the prediction models. The repository also contains an archive

with all the formulae in the DIMACS format.

2 BACKGROUND
2.1 Boolean formulae
A Boolean formula 𝐹 is defined over a set of Boolean variables

Var(𝐹 ) and takes a Boolean value that can be true or false. A literal

is either a variable 𝑥 ∈ Var(𝐹 ) or its negation ¬𝑥 , such that if

variable 𝑥 is set to true then the literal 𝑥 evaluates to true and

the literal ¬𝑥 evaluates to false. We use the notations Var(𝑥) and
Var(¬𝑥) to refer to the variable corresponding to the literal 𝑥 and

¬𝑥 , respectively, viz. variable 𝑥 .
A model 𝑚 of 𝐹 (𝑚 |= 𝐹 ) is a set of literals such that ∀𝑥 ∈

𝑉𝑎𝑟 (𝐹 ) 𝑥 ∈ 𝑚 ⊕¬𝑥 ∈𝑚 and 𝐹 evaluates to true (with ⊕, the binary
exclusive or operator). We say that a literal 𝑙 evaluates to true in

a model𝑚 if and only if 𝑙 ∈𝑚. Otherwise we say that the literal 𝑙

evaluates to false in𝑚. We define 𝑅𝐹 as the set of models𝑚 of 𝐹

such that𝑚 |= 𝐹 if and only if𝑚 ∈ 𝑅𝐹 . We define |𝑅𝐹 | as the size
of the set 𝑅𝐹 .

A formula 𝐹 is in negational normal form (NNF) if the negation

only appears directly in front of variables. Furthermore, it is in con-

junctive normal form (CNF) if written as a conjunction of disjunc-

tion of literals (𝐹 =
∧

𝐴𝑖

∨
𝑙∈𝐴𝑖

𝑙). A deterministic decomposable

NNF (d-DNNF) is an NNF where every conjunction is decomposable
and every disjunction is deterministic. A conjunction

∧
𝑁𝑖 is decom-

posable if for every pair ( 𝑗, 𝑘) we haveVar(𝑁 𝑗 )∩Var(𝑁𝑘 ) = ∅. A dis-

junction

∨
𝑁𝑖 is deterministic if for every pair ( 𝑗, 𝑘), 𝑅 (𝑁 𝑗∧𝑁𝑘 ) = ∅.

𝐼 ⊆ Var(𝐹 ) of a formula 𝐹 is an independent support if every
model of 𝐹 can be uniquely distinguished by using the variables in 𝐼

only [8, 19]. An independent support is minimal (MIS) if removing

any variable from it does not yield an independent support.

Based on the above, we define the concepts of backbone and

equivalence class:

Definition 1 (Backbone). The backbone 𝐵𝐹 of a formula 𝐹 is
defined as the set of literals that appear in each model of the formula:

𝐵𝐹 = {𝑙 |∀𝑚 ∈ 𝑅𝐹 (𝑙 ∈𝑚)}

The backbone contains the literals that evaluate to true in every

model of the formula. If we generalize the idea of equivalence

between literals and the constant true to the idea of equivalence

between literals we find a notion of equivalence class:

Definition 2 (Eqivalence class). An equivalence class 𝑒 is a
set of literals that evaluate to the same value in every model of 𝐹 .

∀𝑙, 𝑙 ′ ∈ 𝑒 ∀𝑚 ∈ 𝑅𝐹 ((𝑙 ∈𝑚) ⇔ (𝑙 ′ ∈𝑚)) .

By this definition we find that if {𝑥,𝑦} is an equivalence class

then {¬𝑥,¬𝑦} is also an equivalence class. These two equivalence

classes are redundant as they represent the same result. We define

two equivalence classes 𝑎 and 𝑏 as redundant if and only if 𝑎 = 𝑏

or 𝑎 = {¬𝑥 |𝑥 ∈ 𝑏} or 𝑎 ⊆ 𝑏 or 𝑏 ⊆ 𝑎. If we have 𝑎 ⊆ 𝑏 we keep 𝑏

and discard 𝑎. For the rest of the paper, without loss of generality,

we only consider non-redundant equivalence classes. We define

the set 𝐸𝐹 as the set of all non-redundant equivalence classes of a

formula 𝐹 and |𝐸𝐹 | as the number of equivalence classes of 𝐹 . Note

that we necessarily have |𝐸𝐹 | ≤ |𝑉𝑎𝑟 (𝐹 ) | because we only consider
non-redundant equivalence classes.

We next define three common problems for Boolean formulae,

i.e., SAT solving, model counting, and URS.

Definition 3 (SAT solving). SAT solving is the problem of find-
ing a model𝑚 for a given formula 𝐹 .

Definition 4 (Model counting (# SAT)). Model counting is the
problem of computing the size of 𝑅𝐹 .

Definition 5 (Uniform Random Sampling). URS is the problem
of sampling a model from 𝑅𝐹 such that every𝑚 ∈ 𝑅𝐹 has probability
1

|𝑅𝐹 | of being sampled.

Despite their intrinsic links, these three problems are very dif-

ferent and require dedicated solutions to be addressed.
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2.2 URS, Configurable Systems and Feature
Models

URS is highly relevant for quality assurance activities for config-

urable systems, e.g., during testing [17, 37], verification [10, 32] and

performance analysis [21]. This support consists of computing a

representative sample of variants to infer analysis results for other

variants (based on their common features with the sample). Because

these variants are too numerous to be all considered for analysis,

sampling offers an adequate compromise between completeness

and efficiency.

Various artifacts can drive the sampling of system variants, such

as feature models [22], source code, test suites, behavioral models,

etc. Feature models, however, remain the most commonly used

input for sampling techniques designed for configurable systems.

The main reason is that the semantics of feature models can be

expressed in first-order logic [6, 39], whose set of solutions corre-

sponds to the set of valid SPL variants. This makes feature models

inherently amenable to URS.

3 OBJECTIVES AND METHODS
Our objective is to understand and predict the capability (or lack

thereof) of state-of-the-art samplers to sample solutions from a

Boolean formula uniformly.

3.1 Research Questions
Our first research question investigates the role of metrics in the

complexity of uniform random sampling:

RQ1:Which metrics of Boolean formulae correlate with URS

time and memory consumption?

In addition to simple characteristics like the number of variables

and clauses, we consider concepts that are intensively used in the

problems of SAT solving, model counting, and URS, e.g., the size of

the minimal independent support and the number of equivalence
classes.

We aim to exploit our analysis results to develop an approach

that, based on the correlated characteristics, can predict whether a

formula would be too costly to uniformly sample from (i.e., would

exceed a predefined time and memory budget). This would enable

engineers to estimate whether it is feasible to sample solutions

with uniform samplers without wasting computation resources on

intractable problems.

RQ2: Can the correlated characteristics be used to predict

the affordability of URS in terms of time and memory con-

sumption?

To answer this question, we train random forest models to clas-

sify Boolean formulae into “affordable” or “not affordable”, based

on different combinations of the characteristics we study.

Lastly, we study whether the intrinsic links between SAT solving,

model counting and sampling translate into the same influence of

formula characteristics on these three problems.

RQ3: Are the characteristics of Boolean formulae correlated

to the complexity of URS as they are to SAT solving and

model counting?

A positive answer to this question would pave the way to im-

prove the efficiency of URS by working on the same formula trans-

formations that reduce the difficulty of SAT solving and model

counting. A negative answer would invalidate this path and call

for specific solutions to reduce the complexity characteristics that

impact sampling.

3.2 Complexity metrics
We consider simple metrics that are trivially computed from the

structure of a Boolean formula:

• the number of variables #𝑣

• the number of clauses #𝑐

• the number of literals #𝑙

We, furthermore, consider underlying concepts that SAT solvers,

counters, and samplers have used to improve the performance of

their algorithm. One such metric is #𝑚𝑖𝑠 , the the size of the Minimal
Independent Support (MIS). MIS is typically computed to improve

the performance of model counters (like D4 [25] and sharpSAT

[43]) that some URS tools invoke during sampling.

Unfortunately computing the MIS itself may be unaffordable for

complex formulae. To this end, we propose the number of equiva-
lence classes (#𝑒𝑞𝑣). The advantage over MIS is that the computation

of equivalence classes only requires a simple SAT solver. We further

increase the efficiency of this computation through a parallel algo-

rithm that we develop hereafter. Using this algorithm, we compute

#𝑒𝑞𝑣 for the Linux 2013 model (50000 variables) [36] in less than

1.5 wall-clock hours while computing #𝑚𝑖𝑠 times out at 24 hours.

Another way of approximating the MIS is to use Arjun [42], which

is significantly faster than the computation of equivalence classes.
Unfortunately, using Arjun to compute an independent support

gave us lower correlations so we decided to use MIS [19] and #𝑒𝑞𝑣 .

In addition, we consider other metrics that have been studied in

the context of SAT solving, viz. treewidth [33] and deficiency [34].

Treewidth (tw) is used to bound the worst-case size of the decision

DNNF (D-DNNF) during solving [33]. Deficiency (𝛿) was proven

to have intrinsic links with the worst-case time complexity of SAT

solving [34]. Though computing deficiency is an NP-hard problem,

it can often be approximated as the number of clauses minus the

number of variables.

3.3 EQV: A parallel algorithm to compute the
number of equivalence classes

In [9], the authors generalize the notion of backbone to equiva-

lence classes and propose an algorithm to compute the equivalence

classes. However, their algorithm requires to add
𝑛 (𝑛−1)

2
variables

to a formula with 𝑛 variables – in our dataset, 𝑛 can be as high

as 486193 variables. Assuming every variable requires 4 bytes of

RAM to be stored, the algorithm would necessitate around 472 GB

of RAM to store the additional variables. This is unaffordable and

prevents us from computing #𝑒𝑞𝑣 on most of the formulae we use

in our experiments.

We therefore propose an adapted algorithm that requires less

storage memory and can improve efficiency via parallelization. Our

algorithm can divide the computation of [9] to reduce the number

of added variables and enable spreading over multiple cores. It
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introduces an overhead, though, as it may increase the number

of intermediate solver calls. As a result, our approach would run

slower on a single-core computer than [9], but brings benefits on

multi-core infrastructures.

Algorithm 1 EQV(𝜙)

Require: 𝜙 a satisfiable Boolean formula

1: 𝑚 ← 𝑆𝐴𝑇 (𝜙)
2: 𝑒 ← {𝑚}
3: 𝑣 ← {{𝑥}|𝑥 ∈𝑚}
4: 𝑐𝑟𝑖𝑡 ←𝑚𝑢𝑡𝑒𝑥

5: do in parallel
6: for all {𝑥,𝑦} ∈ P(𝑚) do
7: 𝑙𝑜𝑐𝑘 (𝑐𝑟𝑖𝑡)
8: 𝐶 ← (∃𝑖 ∈ 𝑒.{𝑥,𝑦} ⊆ 𝑖) ∧ ¬(∃𝑖 ∈ 𝑣 .{𝑥,𝑦} ⊆ 𝑖)
9: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (𝑐𝑟𝑖𝑡)
10: if 𝐶 then
11: 𝑡𝑚𝑝 ← 𝑆𝐴𝑇 (𝜙 ∧ (𝑥 ⊕ 𝑦))
12: 𝑙𝑜𝑐𝑘 (𝑐𝑟𝑖𝑡)
13: if 𝑡𝑚𝑝 = 𝑈𝑁𝑆𝐴𝑇 then
14: {the SAT solver proved the equivalence of 𝑥 and 𝑦}

15: 𝑡 ← ⋃
𝑖∈𝑣 |𝑥∈𝑖∨𝑦∈𝑖 𝑖

16: 𝑣 ← {𝑖 |𝑖 ∈ 𝑣 ∧ 𝑥 ∉ 𝑖 ∧ 𝑦 ∉ 𝑖}
17: 𝑣 ← 𝑣 ∪ {𝑡}
18: else
19: {the SAT solver disproved the equivalence of 𝑥 and 𝑦}

20: 𝑟 ← ∅
21: for all 𝑖 ∈ 𝑒 do
22: 𝑎 ← {𝑙 |𝑙 ∈ 𝑖 ∧ 𝑙 ∈ 𝑡𝑚𝑝}
23: 𝑏 ← {𝑙 |𝑙 ∈ 𝑖 ∧ ¬𝑙 ∈ 𝑡𝑚𝑝}
24: 𝑟 ← 𝑟 ∪ {𝑎} ∪ {𝑏}
25: end for
26: 𝑒 ← 𝑟

27: end if
28: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (𝑐𝑟𝑖𝑡)
29: end if
30: end for
31: return v

Our method is depicted by Algorithm 1 with ⊕ being the logical

exclusive or operator. The algorithm uses a 𝑆𝐴𝑇 procedure which

takes as input a Boolean formula and either returns 𝑈𝑁𝑆𝐴𝑇 if the

formula is not satisfiable or returns the set of literals that represents

the solution found by the SAT solver. The algorithm works as

follows. We start by making a first call to 𝑆𝐴𝑇 . Here, we suppose

that the formula is satisfiable. We then suppose that the formula

has only a single solution and thus consider all literals to be one

equivalence class, i.e., the set 𝑒 . The set 𝑒 represents the set of

possible but unverified equivalence classes. We pick a possible pair

out of all the equivalence classes (lines 6 to 9) that is a possible

candidate for an equivalence and which has not yet been proven to

be correct. We call the 𝑆𝐴𝑇 solver and ask for a solution in which

𝑥 and 𝑦 are different to disprove their equivalence. If the result

is 𝑈𝑁𝑆𝐴𝑇 , we have a proof that 𝑥 and 𝑦 are equivalent in all the

models and we modify 𝑣 accordingly. The set 𝑣 thus represents the

set of the verified equivalence classes. On the other hand, if the 𝑆𝐴𝑇

solver returns a solution 𝑡𝑚𝑝 we know that there exists a model of

our formula in which 𝑥 and 𝑦 are not equivalent and thus 𝑥 and 𝑦

cannot be in the same equivalence class. We can also learn from

the solution 𝑡𝑚𝑝 by looking at its difference with our first model𝑚.

If two literals 𝑥 and 𝑦 are supposedly equal in every model then if

𝑥 is present in both𝑚 and 𝑡𝑚𝑝 , then so should 𝑦 be. In other words,

every change in 𝑥 from𝑚 to 𝑡𝑚𝑝 should also happen in 𝑦. Using

this information, we update 𝑒 between lines 18 and 24. We observe

that 𝑒 contains the verified separation of equivalence classes and 𝑣

contains the verified unions of equivalence classes. The set 𝑒 thus

allows us to avoid making unnecessary 𝑆𝐴𝑇 calls if we have already

found two models that disprove the equivalence of two literals.

The loop on line 6 is the for loop that may be parallelized. The

critical sections of Algorithm 1 may seem very large, but the data

structures 𝑒 and 𝑣 can be updated efficiently (especially considering

that 𝑣 may be implemented using the UnionFind data structure).

Moreover, the 𝑆𝐴𝑇 calls are done outside of a critical section and

thus in parallel which should grant us a significant speedup.

4 EXPERIMENTAL SETUP
We detail below the general experimental protocol that applies to all

research questions. The specific settings of each research question

are detailed in Section 5.

4.1 Samplers
SPUR [2]: SPUR is built on top of sharpSAT [43], a #SAT solver.

Since sharpSAT essentially walks through all the solutions of a

formula to count them one might think of using that to sample

from a formula which is exactly what SPUR does. SPUR being

tightly integrated into sharpSAT, it can exploit the way sharpSAT

walks through the solutions and can thus produce uniform samples.

SPUR is also one of the few samplers that comes with theoretical

guarantees regarding uniformity.

UniGen3 [41]: a hashing-based algorithm. To improve UniGen2,

the authors investigated the bottlenecks of UniGen2 and made key

improvements to their algorithm and to the way CryptoMiniSat

handles XOR formulae, leading to better performance.

We use both SPUR and UniGen3 as these are the state of the art

samplers with theoretical guarantees of uniformity.

In our study, we also would like to explore the relationship

between URS and SAT solving and the relationship between URS

and SAT counting. To compare URS with SAT solving, we explored

the two solvers MiniSAT [14] and Z3 [11]. To compare with SAT

counting, we used the two state-of-the-art model counters D4 [25]

and sharpSAT [43]. Since another sampler called KUS [40] is based

on D4, this should also give us insights into the complexity of KUS.

We do not evaluate KUS as most of the complexity related to the

sampling process is absorbed by the call to D4 as demonstrated in

[40].

We added an implementation of bounded SAT solving (BSAT)

using Z3. BSAT is a function BSAT(𝜙, 𝑛) defined as follows: the

function recursively calls Z3 on 𝜙 and removes the returned model

from the formula until either the formula becomes unsatisfiable

or the number of iterations is greater than 𝑛. BSAT is thus a form

of SAT sampler which is almost guaranteed to be very far from

uniform.
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4.2 #SAT preprocessing
We would like to study the influence of formula preprocessing on

the complexity of URS and on the correlations with our metrics. To

this end we use a preprocessor called Arjun [42]. Arjun computes

an independent support 𝐼 of the input formula 𝐹 and removes the

variables that are not in the independent support 𝐼 if the projection

can be done in reasonable time and space. We thus obtain a new

formula 𝐹 ′ which is the projection of 𝐹 on the set of variables 𝐼 .

Arjun ensures that 𝑅𝐹 ′ is the projection of 𝑅𝐹 on the independent

support 𝐼 and that |𝑅𝐹 ′ | = |𝑅𝐹 |. Thus using Arjun as a preprocessor

to URS does not influence the uniformity of a sampler if the sampler

is guaranteed to be uniform.

4.3 Dataset
We use well-known and publicly available models in our study,

which are of various complexity and are either feature models or

general Boolean formulae.

4.3.1 Feature model benchmark. Overall, we use the feature mod-

els of 128 real-world configurable systems (Linux, eCos, toybox,

JHipster, etc.) with varying sizes and complexity. We first rely on

117 feature models used in [23, 24]. The majority of feature mod-

els contain between 1,221 and 1,266 features. Of these 117 models,

107 comprise between 2,968 and 4,138 cross-tree constraints, while

one has 14,295 and the other nine have between 49,770 and 50,606

cross-tree constraints [23, 24]. Second, we include ten additional

feature models used in [26] and not in [23, 24]; they also contain a

large number of features (e.g., more than 6,000). Third, we add the

JHipster feature model [17, 38] to the study, a realistic but relatively

small feature model (45 variables, 26,000+ configurations). We later

refer to these benchmarks as the feature model benchmarks. Once

put in conjunctive normal form, these instances typically contain

between 1 and 15 thousand variables and up to 340 thousand clauses.

The hardest of them, modeling the Linux kernel configuration, has

more than 6,000 variables, and 340,000 clauses. It is generally seen

as a milestone in configurable system analysis.

4.3.2 General Boolean formulae. In addition to these feature mod-

els, we have replicated the initial experiments on industrial SAT

formulae as conducted in [13]. We use these results to ensure that

we are using the tools with the same configurations that were previ-

ously compared. Moreover, since these original formulae are much

smaller than the feature models we use (typically a few thousand

clauses), they will provide a basis of results for statistical analy-

sis, in case a solver cannot produce enough samples on the harder

formulae.

4.4 Infrastructure
The experiments regarding the computation of the equivalence

classes, the MIS computation as well as the time and memory usage

of the samplers were computed on an HPC containing 318 nodes

each of which has 256 GB of RAM and 2 AMD Epyc ROME 7H12

CPUs running at 2.6 GHz.

To measure the memory usage of the samplers we developed

a wrapper program which reads the appropriate file in the /proc

folder which contains information about the virtual memory usage

of the program. We asked the samplers to compute 1000 samples

while using less than 64 GB of RAM and in under 5 hours.

The treewidth was computed with the tool described in [18].

The correlations were computed using the SciPy Python library.

To train the predictors we used Python and the scikit-learn library

[35]. We used standard parameters for random forests, viz. we set

the number of trees to 100, used Gini impurity for splitting, and set

the number of features to consider at each split to the square root

of the total number of features.

5 RESULTS
5.1 RQ1: complexity factors
Table 1 shows the Kendall rank correlation coefficients for the SPUR

and UniGen3 samplers. The coefficients have been computed on

the instances on which we successfully managed to compute 1000

samples in less than 5 hours and using less than 64GB of virtual

memory. This means that the table was computed on 416 formu-

lae for SPUR and 241 formulae for UniGen3. The columns #v, #c,

and #l represent respectively, the number of variables, number of

clauses, and the number of literals respectively, with the number

of literals being the sum of the lengths of all clauses. The time and

mem columns indicate the computation time and the amount of

virtual memory used by a single call to Z3 respectively. We have

2 groups in our table, the regular group where we compute the

correlations over our formulae and the (+Arjun) group where we

first preprocess the formula with Arjun [42] and then call SPUR or

UniGen3 on the output of Arjun. Some solvers take advantage of a

possible MIS declaration inside of the DIMACS files. Unfortunately,

not all of the solvers take advantage of the MIS declaration. We thus

removed the MIS declarations from the DIMACS files. The results

with the MIS declaration are nonetheless available on our compan-

ion GitHub [4]. There are no correlations between the (+Arjun)

groups and the equivalence classes because Arjun automatically

removes redundant variables. The time and memory usage of Arjun

is ignored (the median runtime was 0.15 seconds with the longest

runtime being 17 minutes). All the p-values are lower than 10
−3
.

We computed the MIS by using the tool in [19] on both the ini-

tial formulae and the preprocessed formulae. Although Arjun [42]

returns an independent support, we find that the correlations are

worse. We thus decided to compute the MIS with [19].

For both SPUR and UniGen3 we observe that the most correlated

metrics with the computation time or the virtual memory usage

is either the size of the MIS or the number of equivalence classes.

However, if we add Arjun as a preprocessing step, we observe

that the correlations change between SPUR and UniGen3. SPUR

(+Arjun) is highly correlated with the number of clauses and with

𝛿 while UniGen3 (+Arjun) is highly correlated with the number of

variables and the size of the MIS. This difference can be explained

through their respective algorithms. UniGen3 adds clauses to the

formula, and the size and number of added clauses depends on the

number of variables (or on the MIS if the MIS is declared in the

DIMACS file). SPUR on the other hand is based on an exhaustive

DPLL algorithm, which means that SPUR spends a lot of time doing

boolean constraint propagation which is sensitive to the number

of clauses.
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#v #c #l tw 𝛿 #mis #eqv time z3 mem z3

time SPUR 45.741 48.502 50.000 34.582 49.263 62.255 68.474 34.223 39.988

mem SPUR 42.213 46.195 47.966 31.556 47.062 60.151 62.761 32.670 37.964

time SPUR (+Arjun) 58.865 79.125 75.663 64.014 75.521 50.814 - 34.552 46.589

mem SPUR (+Arjun) 61.984 79.073 75.190 64.100 74.240 53.920 - 35.606 47.502

time UniGen3 47.230 45.545 45.017 34.614 44.192 54.574 74.890 25.000 22.266

mem UniGen3 47.819 45.247 45.023 37.603 43.475 68.683 71.353 24.887 24.403

time UniGen3 (+Arjun) 88.902 46.035 44.769 41.602 44.005 81.159 - 21.965 32.522

mem UniGen3 (+Arjun) 86.922 38.836 37.962 35.206 36.546 88.146 - 19.418 29.567

Table 1: Kendall rank correlation coefficients of the used metrics with SPUR (416 data points), SPUR (+Arjun) (441 data points),
UniGen3 (241 data points) and UniGen3 (+Arjun) (309 data points). All of the p-values are lower than 0.001.

Answer to RQ1: The number of equivalence classes and

the number of variables in the MIS strongly correlate (> 62

for all formulae) with computation time and memory usage

of both UniGen3 and SPUR. If the formulae are preprocessed

with Arjun, then we find that the highest correlations are with

the number of variables, the number of clauses, 𝛿 and the size

of the MIS.

5.2 RQ2: complexity prediction
We cover here the results regarding formula classification using our

trained random forests. We consider binary classification here. We

selected the formula processed within the following affordability

limits: 30 minutes of computation time and less than 4GB of virtual

memory. This selection allowed balanced training data.

Table 2 shows the different Gini importances (i.e. feature impor-

tances) of our different metrics in a random forest that contains

1000 instances. The lines where the SAT sampler is suffixed with

"(+Arjun)" are the lines where the formulae were first preprocessed

with Arjun [42]. The time and memory used for a single Z3 call

play a negligible role. The two main features are the number of

equivalence classes and the size of the MIS. If however, we use

Arjun as preprocessor we observe that the number of variables, the

number of clauses, the number of literals and 𝛿 seem to be interest-

ing choices as well further confirming our initial correlations. The

treewidth has high importance for SPUR (+Arjun) but is expensive

to compute, diminishing its value for large formulae.

In Table 3 we explore the F1-scores of a random forest containing

100 instances that were trained on different metrics. The “all" line

indicates the predictor trained on all of the metrics. We also use

𝛿 ′ instead of 𝛿 in some of the experiments. 𝛿 ′ is defined as 𝛿 ′ =
#𝑐 − #𝑣 . While this is only an estimation of 𝛿 , our experiments show

that it is usually a very good estimation and it is a lot faster to

compute as well. As previously, we report sampler results with and

without the Arjun preprocessing step. #eqv is always ignored when

Arjun is used as a preprocessor. Arjun automatically simplifies the

equivalence classes in the formula, thus we find #𝑣 = #𝑒𝑞𝑣 for the

preprocessed formulae eliminating the need to computing #𝑒𝑞𝑣 . The

table entries that involve both Arjun and #𝑒𝑞𝑣 are simply computed

by ignoring #𝑒𝑞𝑣 . The predictions were done using a leave-one-out

strategy and the F1-scores evaluated on the predictions. This means

that for every data-point 𝑥 , we trained amodel on the complete data-

set excluding𝑥 and performed a prediction for𝑥 . The predictions are

collected in a table and the scores are computed on the prediction

table. Table 4 shows the ROC AUCs just like Table 3 shows the

F1-scores.

We observe that while the model trained on all features seems to

perform best, the model trained on only a fraction of the features

perform almost identically. The tables also show that if we were

to take only one metric, then the number of equivalence classes

is the best unless Arjun is used as a preprocessor in which case

𝛿 ′ and the number of clauses seem to be very good candidates. If

we focus on easily computable metrics, then the models that seem

most promising are the ones trained on the number of variables,

𝛿 ′ and on the number of equivalence classes. If we preprocess the

formulae with Arjun then the number of variables and 𝛿 ′ seem
sufficient. Furthermore, we find that using Arjun increases both F1

scores and ROC AUCs.

In Table 5, we reported the F1-scores of decision trees (DT) and

random forests (RF) using a different number of instances. The

models were trained using #v, 𝛿 ′ and #eqv (if Arjun is not used)

and were evaluated using a leave-one-out strategy. We observe that

a random forest containing 100 instances performs slightly better

than the other models.

Answer to RQ2:We find that the number of equivalence

classes alone forms an excellent predictor to classify sampling

difficulty according to an affordability budget. Similarly, we

observe that if Arjun is used to preprocess a formula, then

prediction becomes easier.

5.3 RQ3: URS
Table 6 shows the Kendall rank correlation coefficients for the

MiniSAT and Z3 SAT solvers as well as our implementation of

BSAT using Z3 and the state-of-the-art model counters D4 and

sharpSAT.

All the 488 models have been used for the lines involving Z3,

MiniSAT and BSAT as all managed to be sampled in less than 5

hours and with less than 64GB of virtual memory. The BSAT algo-

rithm seems strongly correlated to the size of the MIS as well as the

number of equivalence classes but it is even more correlated to the

number of variables, clauses, and literals. BSAT does seem close

to SPUR and UniGen3 however for the values of the correlation
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#v #c #l tw 𝛿 #mis #eqv time Z3 mem Z3

SPUR 9.811 6.572 4.689 10.947 7.705 13.061 37.869 3.367 5.975

UniGen3 7.016 8.327 11.066 2.706 8.774 27.061 31.631 1.496 1.918

SPUR (+Arjun) 4.023 16.212 20.819 25.342 17.860 2.962 - 2.951 9.829

UniGen3 (+Arjun) 27.684 20.963 12.669 4.479 10.531 18.247 - 1.843 3.585

Table 2: Feature importances in a random forest containing 1000 instances

SPUR SPUR (+Arjun) UniGen3 UniGen3 (+Arjun)

#mis 67.469 73.333 91.329 90.995

#eqv 80.981 - 91.254 -

𝛿 ′ 62.721 85.714 83.082 90.783

#v 60.000 62.400 86.629 93.706

#c 65.497 86.179 85.499 91.469

all 83.950 91.200 97.338 96.759

#v, #c, #l, tw, 𝛿 , #mis, #eqv 85.185 92.683 97.904 96.998

#v, #c, tw, 𝛿 , #mis, #eqv 83.229 91.057 98.084 96.774

#v, tw, 𝛿 , #mis, #eqv 84.472 91.057 97.888 96.998

#v, tw, 𝛿 ′, #mis, #eqv 83.018 92.683 98.467 96.998

#v, 𝛿 ′, #mis, #eqv 83.544 - 97.896 -

#v + 𝛿 ′ + #mis 78.750 89.256 97.142 96.296

#v + 𝛿 ′ + #eqv 83.333 - 94.656 -

#v + 𝛿 ′ 68.674 88.524 89.591 95.833

#v + #c + 𝛿 ′ 66.667 90.164 89.552 95.833

#v + #c + #l + 𝛿 ′ 68.712 88.710 89.888 95.814

Table 3: F1-scores with different features of a random forest containing 100 instances estimated using LOO

SPUR SPUR (+Arjun) UniGen3 UniGen3 (+Arjun)

#mis 80.115 83.886 90.804 83.886

#eqv 87.676 - 90.491 -

𝛿 ′ 77.587 90.444 81.334 90.444

#v 76.025 78.712 85.264 78.712

#c 79.496 91.829 84.028 91.829

all 89.238 95.283 97.085 95.283

#v, #c, #l, tw, 𝛿 , #mis, #eqv 89.957 95.511 97.718 95.511

#v, #c, tw, 𝛿 , #mis, #eqv 88.643 94.591 97.970 94.591

#v, tw, 𝛿 , #mis, #eqv 89.362 94.591 97.779 94.591

#v, tw, 𝛿 ′, #mis, #eqv 88.171 95.511 98.382 95.511

#v, 𝛿 ′, #mis, #eqv 88.295 - 97.748 -

#v + 𝛿 ′ + #mis 85.891 92.978 96.894 92.978

#v + 𝛿 ′ + #eqv 87.824 - 94.230 -

#v + 𝛿 ′ 80.834 92.863 88.249 92.863

#v + #c + 𝛿 ′ 79.520 93.784 88.279 96.385

#v + #c + #l + 𝛿 ′ 80.487 93.556 88.722 96.328

Table 4: ROC AUCs with different features of a random forest containing 100 instances estimated using LOO

coefficients with the size of the MIS and the number of equivalence

classes. We do find that D4 and sharpSAT have very similar correla-

tion coefficients with both SPUR and UniGen3. This would indicate

that in practice, the complexity of model counters and uniform

random samplers are very close.

For both MiniSAT and Z3 we observe a strong correlation with

the number of variables, the number of clauses, and the number of

literals. We do not however observe a high correlation with the MIS

or the number of equivalence classes. The correlation coefficients

seem to be very different between SAT solving and URS. On the

other hand, BSAT seems to be a combination of SAT solving and

URS in terms of correlations.
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SPUR SPUR (+Arjun) UniGen3 UniGen3 (+Arjun)

DT 82.424 89.256 95.635 94.836

RF 10 83.116 89.076 95.000 95.059

RF 100 84.810 88.525 95.419 96.759

RF 1000 83.544 88.333 95.219 96.536

Table 5: F1-scores with different models trained on #v, 𝛿 ′ and #eqv estimated using LOO

#v #c #l tw 𝛿 #mis #eqv time Z3 mem Z3

time Z3 69.198 72.567 71.901 55.718 71.659 45.977 47.383 100.000 72.171

mem Z3 76.995 81.533 79.994 64.732 80.993 49.527 56.587 72.171 100.000

time MiniSAT 68.033 74.231 74.051 64.682 76.411 45.885 55.390 64.398 73.426

mem MiniSAT 72.642 76.102 74.372 62.203 75.609 46.692 52.144 66.101 80.884

time BSAT 77.798 74.961 75.568 55.571 72.368 67.511 65.485 60.592 66.412

mem BSAT 89.193 86.025 83.541 65.261 82.968 62.486 71.169 66.816 76.081

time D4 54.937 55.866 56.154 45.265 55.966 59.494 70.318 39.511 48.182

mem D4 64.563 63.893 62.376 49.951 62.592 58.345 62.926 47.959 56.842

time sharpSAT 49.315 50.093 51.305 37.973 50.405 60.643 64.033 34.972 41.061

mem sharpSAT 35.865 35.896 36.580 22.315 34.994 49.271 42.844 21.886 25.869

Table 6: Kendall rank correlation coefficients of the used metrics with Z3 and MiniSAT (488 data points), as well as BSAT using
Z3 (488 data points), D4 (437 data points) and sharpSAT (416 data points).

Answer to RQ3: SAT solving and URS correlate with differ-

ent metrics and are thus different tasks. SAT model counting

seems to be very close to URS. BSAT seems to be a combination

of both SAT solving and URS in terms of correlation.

5.4 Perspectives
Our results demonstrate that the number of equivalence classes in a

formula has strong correlations with the computational complexity

of sampling. This opens the perspective of increasing sampling

efficiency by transforming the input formulae into an equivalent

formula with fewer equivalence classes similarly to Arjun.

We also revealed that, though less than the equivalence classes,

the MIS also shows strong correlations with sampling complex-

ity. Therefore, efficient ways to compute the MIS and project a

formula onto its MIS would also increase URS efficiency. This is

demonstrated through the usage of Arjun which further confirms

our results. Moreover, Arjun allowed the samplers to solve more

instances and increased the performance of our prediction models.

6 THREATS TO VALIDITY
As for any empirical study, there is a number of threats to consider.

Construct Validity. To assess the validity of our findings, we used

the Kendall rank correlation coefficient on the existing and our

new #EQV metric. The Kendall rank correlation coefficient is non-

parametric (and therefore agnostic to the data distribution) and

was used in the past to establish a relationship between structural

metrics and runtime measures [3]. Regarding the evaluation of

our random forest predictors, we used both F1-score and Receiver

Operating Characteristics (ROC) in order to cope with different clas-

sification thresholds. Themain reason for this is that we have highly

imbalanced data and both metrics react differently to imbalance.

External Validity. We cannot guarantee that our findings generalize

to any formula and all tools in each category (sampling, solving,

counting). The reason behind this is the lack of general under-

standing of the complexity of SAT-based tasks [15], which we aim

to address with new metrics. To mitigate this threat, we selected

a range of SAT formulae from two different sources. They come

from SAT Benchmarks used for the evaluation of uniform samplers

[7, 8, 13] and feature models representing configurable systems of

various types and sizes [1, 37]. In both FM and non-FM categories,

formulae encode different types of models: Electonic circuits, al-

gorithmic problems, etc. for the former, and Linux kernels, Unix

command line tools or configuration tools [17] for the latter.

7 RELATEDWORK
Complexity of SAT problems. As noted by Alyahya et al. [3] and

Vardi et al. [15], studying the complexity of SAT-based tasks is not

new. One of the first approaches was to characterise phase tran-
sitions linked to abrupt changes in solving complexity. Monasson

et al. offered a structural metric, namely the ratio of clauses to

variables [29]. They were able to demonstrate that when this ratio

increases, finding solutions for a given randomly generated for-

mula is progressively harder up to a critical value of this ratio past

which the formula becomes easy to solve again (often by proving

it UNSAT). Alyahya’s survey further covers metrics we also used

in this study, such as treewidth correlated with solving time [27].

These metrics were not so far assessed for URS techniques. Yet, MIS

is expected to play a role in the scalability of sampling [42]. We

found that MIS is indeed correlated with solving time and memory
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consumption but the difficulty of computing MIS is an issue. This

motivated us to offer a more scalable metric.

Regarding FM-based formulae specifically, the body of knowl-

edge is more limited. Mendonca et al. did not observe such phase

transitions for FM formulae: solving was easy throughout the ratio

values [28]. Liang et al. [26] further confirmed these results on

larger industrial FMs. Johansen discusses the implications of these

findings for combinatorial interaction testing of software product

lines [20]. This study is the first to evaluate and offer metrics for

uniform sampling of FM and non-FM formulae, in which we show

that direct comparison with solving does not hold.

8 CONCLUSION
To understand the complexity of SAT-based uniform sampling,

solving and counting, we have proposed an efficient algorithm to

compute the equivalence classes (EQV) of a Boolean formula 𝐹 . This

metric possesses two desirable properties other structural metrics

fail to have both: i) a strong correlation to the computation time

and memory consumption and ii) its computation scales even on

complex formulae, thanks to its ability to exploit parallel computing

infrastructures. We showed that EQV can accurately (ROC AUC

scores > 87% ) predict if a formula 𝐹 is going to be easy or difficult

to sample uniformly.

Furthermore, we showed that preprocessing techniques like Ar-

jun can not only improve the scalability of samplers but also make

the performance predictions of said samplers easier and more accu-

rate further motivating the development of efficient preprocessing

techniques for URS and model counting.

We also highlighted that EQV helped understand where URS

complexity stands compared to two other SAT-based tasks: solving

and model counting. We found that, at least in practice, URS is

closer to model counting than to SAT solving. On the one hand, this

prevents the naive use of standard solvers as uniform samplers. On

the other hand, it further motivates research at the intersection of

model counting with uniform sampling [42]. We expect our metric

as well as Arjun to play a role in this bidirectional relationship,

e.g., supporting the development of new knowledge compilation

techniques.
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