Article (Périodiques scientifiques)
Label Propagation Techniques for Artifact Detection in Imbalanced Classes Using Photoplethysmogram Signals
Macabiau, Clara; LE, Thanh-Dung; Albert, Kevin et al.
2024In IEEE Access, 12, p. 81221 - 81235
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Label_Propagation_Techniques_for_Artifact_Detection_in_Imbalanced_Classes_Using_Photoplethysmogram_Signals.pdf
Postprint Auteur (2 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
imbalanced classes; label propagation algorithm; machine learning classifiers; Motion artifacts; photoplethysmogram (PPG) signals; Annotation; Biomedical monitoring; Classification algorithm; Imbalanced class; Label propagation; Label propagation algorithm; Learning classifiers; Machine learning classifier; Machine-learning; Motion artifact; Photoplethysmogram; Photoplethysmogram signal; Prediction algorithms; Propagation algorithm; Computer Science (all); Materials Science (all); Engineering (all); Computer Science - Learning; eess.SP; 68T02
Résumé :
[en] This study aimed to investigate the application of label propagation techniques to propagate labels among photoplethysmogram (PPG) signals, particularly in imbalanced class scenarios and limited data availability scenarios, where clean PPG samples are significantly outnumbered by artifact-contaminated samples. We investigated a dataset comprising PPG recordings from 1571 patients, wherein approximately 82% of the samples were identified as clean, while the remaining 18% were contaminated by artifacts. Our research compares the performance of supervised classifiers, such as conventional classifiers and neural networks (Multi-Layer Perceptron (MLP), Transformers, Fully Convolutional Network (FCN)), with the semi-supervised Label Propagation (LP) algorithm for artifact classification in PPG signals. The results indicate that the LP algorithm achieves a precision of 91%, a recall of 90%, and an F1 score of 90% for the 'artifacts' class, showcasing its effectiveness in annotating a medical dataset, even in cases where clean samples are rare. Although the K-Nearest Neighbors (KNN) supervised model demonstrated good results with a precision of 89%, a recall of 95%, and an F1 score of 92%, the semi-supervised algorithm excels in artifact detection. In the case of imbalanced and limited pediatric intensive care environment data, the semi-supervised LP algorithm is promising for artifact detection in PPG signals. The results of this study are important for improving the accuracy of PPG-based health monitoring, particularly in situations in which motion artifacts pose challenges to data interpretation.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Macabiau, Clara  ;  Biomedical Information Processing Laboratory, École de Technologie Supérieure, Montréal, Canada
LE, Thanh-Dung   ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Biomedical Information Processing Laboratory, École de Technologie Supérieure, Montréal, Canada
Albert, Kevin ;  Université de Montréal, CHU Sainte-Justine Research Center, CHU Sainte-Justine Hospital, Montréal, Canada
Shahriari, Mana ;  Université de Montréal, CHU Sainte-Justine Research Center, CHU Sainte-Justine Hospital, Montréal, Canada
Jouvet, Philippe  ;  Université de Montréal, CHU Sainte-Justine Research Center, CHU Sainte-Justine Hospital, Montréal, Canada
Noumeir, Rita  ;  Biomedical Information Processing Laboratory, École de Technologie Supérieure, Montréal, Canada
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Label Propagation Techniques for Artifact Detection in Imbalanced Classes Using Photoplethysmogram Signals
Date de publication/diffusion :
2024
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
Volume/Tome :
12
Pagination :
81221 - 81235
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Natural Sciences and Engineering Research Council
Fonds de recherche en santé du Québec
Commentaire :
Under preparation to submit to IEEE for possible publications
Disponible sur ORBilu :
depuis le 10 juillet 2024

Statistiques


Nombre de vues
131 (dont 1 Unilu)
Nombre de téléchargements
33 (dont 1 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
2
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu