Global and Planetary Change; Food Science; Geography, Planning and Development; Ecology; Renewable Energy, Sustainability and the Environment; Urban Studies; Nature and Landscape Conservation; Management, Monitoring, Policy and Law
Abstract :
[en] Effectively feeding a burgeoning world population is one of the main goals of sustainable agricultural practices. Digital technology, such as edge artificial intelligence (AI), has the potential to introduce substantial benefits to agriculture by enhancing farming practices that can improve agricultural production efficiency, yield, quality and safety. However, the adoption of edge AI faces several challenges, including the need for innovative and efficient edge AI solutions and greater investment in infrastructure and training, all compounded by various environmental, social and economic constraints. Here we provide a roadmap for leveraging edge AI at the intersection of food production and sustainability.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
El Jarroudi, Moussa ; SPHERES Research Unit, Department of Environmental Sciences and Management, University of Liège, Arlon, Belgium
Kouadio, Louis ; Centre for Applied Climate Sciences, Institute for Life and the Environment, University of Southern Queensland, Toowoomba, Australia ; Africa Rice Center (AfricaRice), Bouake, Cote d'Ivoire
Bock, Clive H. ; ARS-US Horticultural Research Laboratory, USDA, Ft. Pierce, United States
Mahlein, Anne-Katrin; Institute of Sugar Beet Research, Göttingen, Germany
Fettweis, Xavier ; SPHERES Research Unit, Department of Geography, University of Liège, Liège, Belgium
Mercatoris, Benoit ; Gembloux Agro-Bio Tech, Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
Adams, Frank; Lycée Technique Agricole de Gilsdorf, Gilsdorf, Luxembourg
Lenné, Jillian M.; North Oldmoss Croft, Fyvie, Turriff, United Kingdom
Hamdioui, Said ; Department of Quantum and Computer Engineering, Delft University of Technology, Delft, Netherlands
External co-authors :
yes
Language :
English
Title :
Leveraging edge artificial intelligence for sustainable agriculture
A.-K.M. was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany\u2019s Excellence Strategy\u2014EXC 2070\u2013390732324. S.H. acknowledges support from the EU Horizon Europe research and innovation programme (grant agreement no. 101070374). C.H.B was supported by the USDA-ARS National Programs through CRIS project 6042-21220-014-000D.
Commentary :
This Nature Sustainability perspective is the result of a collaborative interdisciplinary effort by senior researchers from diverse fields, including agricultural, environmental, social, and computer sciences. These long-time collaborators are all enthusiastic about the deployment of edge AI to improve food production systems across the globe, yet they analysed this potential very honestly and from all possible angles, considering the significant challenges ahead to adapt the technology, making it robust, autonomous, energy, and resource-efficient, and globally beneficial for all farmers, whether they are small-scale farmers in Africa or large landowners in North America.
D. Tilman C. Balzer J. Hill B.L. Befort Global food demand and the sustainable intensification of agriculture Proc. Natl Acad. Sci. USA 2011 108 20260 20264 1:CAS:528:DC%2BC3MXhs1yqsbnM 10.1073/pnas.1116437108
The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction (FAO, 2019).
N. Chhogyel L. Kumar Climate change and potential impacts on agriculture in Bhutan: a discussion of pertinent issues Agric. Food Secur. 2018 7 79 10.1186/s40066-018-0229-6
K.F. Davis et al. Tropical forest loss enhanced by large-scale land acquisitions Nat. Geosci. 2020 13 482 488 1:CAS:528:DC%2BB3cXht1Cqt7vI 10.1038/s41561-020-0592-3
M.G. Muluneh Impact of climate change on biodiversity and food security: a global perspective—a review article Agric. Food Secur. 2021 10 36 10.1186/s40066-021-00318-5
What is agrobiodiversity? FAO https://www.fao.org/fileadmin/templates/soilbiodiversity/Downloadable_files/agrobiodivesity.pdf (2004).
D. Byerlee J. Stevenson N. Villoria Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 2014 3 92 98 10.1016/j.gfs.2014.04.001
UN-Water Blueprint for Acceleration: Sustainable Development Goal 6 Synthesis Report on Water and Sanitation 2023 (United Nations Publications, 2023).
L. Rosa et al. Energy implications of the 21st century agrarian transition Nat. Commun. 2021 12 2319 1:CAS:528:DC%2BB3MXpsVKrsrg%3D 10.1038/s41467-021-22581-7
K.E. Giller et al. The future of farming: who will produce our food? Food Secur. 2021 13 1073 1099 10.1007/s12571-021-01184-6
C. Raymond et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble Environ. Res. Lett. 2022 17 035005 10.1088/1748-9326/ac5712
K. White R. Habib D.J. Hardisty How to SHIFT consumer behaviors to be more sustainable: a literature review and guiding framework J. Mark. 2019 83 22 49 10.1177/0022242919825649
R. Hallak I. Onur C. Lee Consumer demand for healthy beverages in the hospitality industry: examining willingness to pay a premium, and barriers to purchase PLoS ONE 2022 17 e0267726 1:CAS:528:DC%2BB38Xht1aqtL%2FE 10.1371/journal.pone.0267726
R.S. Hughner P. McDonagh A. Prothero C.J. Shultz II J. Stanton Who are organic food consumers? A compilation and review of why people purchase organic food J. Consum. Behav. 2007 6 94 110 10.1002/cb.210
J. Rockström et al. Sustainable intensification of agriculture for human prosperity and global sustainability Ambio 2017 46 4 17 10.1007/s13280-016-0793-6
G. Vial Understanding digital transformation: a review and a research agenda J. Strat. Inf. Syst. 2019 28 118 144 10.1016/j.jsis.2019.01.003
R. Sharma S.S. Kamble A. Gunasekaran V. Kumar A. Kumar A systematic literature review on machine learning applications for sustainable agriculture supply chain performance Comput. Oper. Res. 2020 119 104926 10.1016/j.cor.2020.104926
Yamakami, T. An experimental implementation of an edge-based AI engine with edge-cloud coordination. In 2018 18th International Symposium on Communications and Information Technologies (ISCIT) 442–446 (IEEE, 2018).
McCarthy, J. Programs with common sense. In Proc. Teddington Conference on the Mechanization of Thought Processes 75–91 (Her Majesty’s Stationary Office, 1959).
A.L. Samuel Some studies in machine learning using the game of checkers IBM J. Res. Dev. 1959 3 210 229 10.1147/rd.33.0210
Dechter, R. Learning while searching in constraint-satisfaction-problems. In Proc. Fifth AAAI National Conference on Artificial Intelligence 178–183 (AAAI Press, 1986).
Liu, X. et al. RENO: a high-efficient reconfigurable neuromorphic computing accelerator design. In Proc. 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) 1–6 (2015).
S. Moradi N. Qiao F. Stefanini G. Indiveri A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs) IEEE Trans. Biomed. Circuits Syst. 2018 12 106 122 10.1109/TBCAS.2017.2759700
F. Akopyan et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015 34 1537 1557 10.1109/TCAD.2015.2474396
M.E. Davies et al. Loihi: a neuromorphic manycore processor with on-chip learning IEEE Micro 2018 38 82 99 10.1109/MM.2018.112130359
C. Frenkel J.D. Legat D. Bol MorphIC: a 65-nm 738k-synapse/mm2 quad-core binary-weight digital neuromorphic processor with stochastic spike-driven online learning IEEE Trans. Biomed. Circuits Syst. 2019 13 999 1010 10.1109/TBCAS.2019.2928793
A. Gebregiorgis et al. Tutorial on memristor-based computing for smart edge applications Memories 2023 4 100025
Brown, T. B. et al. Language models are few-shot learners. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 1877–1901 (Curran Associates, 2020).
Patterson, D. et al. The carbon footprint of machine learning training will plateau, then shrink. In Computer Vol. 55, 18–28 (IEEE Computer Society, 2022).
Hamdioui, S. et al. Memristor for computing: myth or reality? In Design, Automation & Test in Europe Conference & Exhibition (DATE) 722–731 (IEEE, 2017).
Singh, A. et al. Low-power memristor-based computing for edge-AI applications. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE 2021).
Singh, A. et al. CIM-based robust logic accelerator using 28 nm STT-MRAM characterization chip tape-out. In Proc. IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS) 1–5 (IEEE, 2022).
Xu, Y. et al. Artificial intelligence: a powerful paradigm for scientific research. Innovation https://doi.org/10.1016/j.xinn.2021.100179 (2021).
Leroux, S., Simoens, P., Lootus, M., Thakore, K. & Sharma, A. TinyMLOps: operational challenges for widespread edge AI adoption. In Proc. IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) 1003–1010 (IEEE, 2022).
V. Kakani V.H. Nguyen B.P. Kumar H. Kim V.R. Pasupuleti A critical review on computer vision and artificial intelligence in food industry J. Agric. Food Res. 2020 2 100033
S. Ninomiya High-throughput field crop phenotyping: current status and challenges Breed. Sci. 2022 72 3 18 10.1270/jsbbs.21069
I. Cisternas I. Velásquez A. Caro A. Rodríguez Systematic literature review of implementations of precision agriculture Comput. Electron. Agric. 2020 176 105626 10.1016/j.compag.2020.105626
P.J. Zarco-Tejada et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations Nat. Plants 2018 4 432 439 1:STN:280:DC%2BB3c%2FhslCksg%3D%3D 10.1038/s41477-018-0189-7
M. Pérez-Ruíz D.C. Slaughter F.A. Fathallah C.J. Gliever B.J. Miller Co-robotic intra-row weed control system Biosyst. Eng. 2014 126 45 55 10.1016/j.biosystemseng.2014.07.009
J.A. Gázquez N.N. Castellano F. Manzano-Agugliaro Intelligent low cost telecontrol system for agricultural vehicles in harmful environments J. Clean. Prod. 2016 113 204 215 10.1016/j.jclepro.2015.11.015
F. Akhavizadegan J. Ansarifar L. Wang I. Huber S.V. Archontoulis A time-dependent parameter estimation framework for crop modeling Sci. Rep. 2021 11 1:CAS:528:DC%2BB3MXhsFOhu7%2FK 10.1038/s41598-021-90835-x
T. van Klompenburg A. Kassahun C. Catal Crop yield prediction using machine learning: a systematic literature review Comput. Electron. Agric. 2020 177 105709 10.1016/j.compag.2020.105709
C.H. Bock J.G.A. Barbedo E.M. Del Ponte D. Bohnenkamp A.-K. Mahlein From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy Phytopathol. Res. 2020 2 9 10.1186/s42483-020-00049-8
Dandrifosse, S., Bouvry, A., Leemans, V., Dumont, B. & Mercatoris, B. Imaging wheat canopy through stereo vision: overcoming the challenges of the laboratory to field transition for morphological features extraction. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00096 (2020).
Y. Ye L. Bruzzone J. Shan F. Bovolo Q. Zhu Fast and robust matching for multimodal remote sensing image registration IEEE Trans. Geosci. Remote Sens. 2019 57 9059 9070 10.1109/TGRS.2019.2924684
Carlier, A., Dandrifosse, S., Dumont, B. & Mercatoris, B. Comparing CNNs and PLSr for estimating wheat organs biophysical variables using proximal sensing. Front. Plant Sci. https://doi.org/10.3389/fpls.2023.1204791 (2023).
M. Raj et al. A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0 J. Netw. Comput. Appl. 2021 187 103107 10.1016/j.jnca.2021.103107
J. Tardaguila M. Stoll S. Gutiérrez T. Proffitt M.P. Diago Smart applications and digital technologies in viticulture: a review Smart Agric. Technol. 2021 1 100005 10.1016/j.atech.2021.100005
A. Khanna S. Kaur Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture Comput. Electron. Agric. 2019 157 218 231 10.1016/j.compag.2018.12.039
J. Bao Q. Xie Artificial intelligence in animal farming: a systematic literature review J. Clean. Prod. 2022 331 129956 10.1016/j.jclepro.2021.129956
Yépez-Ponce, D. F., Salcedo, J. V., Rosero-Montalvo, P. D. & Sanchis, J. Mobile robotics in smart farming: current trends and applications. Front. Artif. Intell. https://doi.org/10.3389/frai.2023.1213330 (2023).
L.N.K. Duong et al. A review of robotics and autonomous systems in the food industry: from the supply chains perspective Trends Food Sci. Technol. 2020 106 355 364 1:CAS:528:DC%2BB3cXit12gu7%2FK 10.1016/j.tifs.2020.10.028
Food robotics: global market unit volume 2020–2030. Statista https://www.statista.com/statistics/1290022/food-robotics-global-market-unit-volume/ (2022).
Z. Zhou et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing Proc. IEEE 2019 107 1738 1762 10.1109/JPROC.2019.2918951
Y.H. Lin et al. Performance impacts of inalog ReRAM non-ideality on neuromorphic computing IEEE Trans. Electron Devices 2019 66 1289 1295 1:CAS:528:DC%2BC1MXht12gsLvM 10.1109/TED.2019.2894273
Mohanan, V., Budiarto, R. & Aldmour, I. Powering the Internet of Things with 5G Networks (IGI Global, 2017).
A. Tzachor M. Devare B. King S. Avin S. Ó hÉigeartaigh Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities Nat. Mach. Intell. 2022 4 104 109 10.1038/s42256-022-00440-4
M.D. Wilkinson et al. The FAIR guiding principles for scientific data management and stewardship Sci. Data 2016 3 10.1038/sdata.2016.18
D. Silvestro S. Goria T. Sterner A. Antonelli Improving biodiversity protection through artificial intelligence Nat. Sustain. 2022 5 415 424 10.1038/s41893-022-00851-6
U. Deichmann A. Goyal D. Mishra Will digital technologies transform agriculture in developing countries? Agr. Econ. 2016 47 21 33 10.1111/agec.12300
Blount-Dorn, K., Detroit Food Policy Council and Lindsey Scalera, Ecology Center Modeling an Equitable Michigan Food System (Michigan State Univ., 2018); https://www.canr.msu.edu/news/modeling-an-equitable-michigan-food-system