Article (Périodiques scientifiques)
GenAI-based Models for NGSO Satellites Interference Detection
SAIFALDAWLA, Almoatssimbillah; ORTIZ GOMEZ, Flor de Guadalupe; LAGUNAS TARGARONA, Eva et al.
2024In IEEE Transactions on Machine Learning in Communications and Networking, 2, p. 904 - 924
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
TMLCN_Final.pdf
Preprint Auteur (6.43 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Non-geostationary orbit satellites (NGSOs); geostationary orbit satellites (GSOs); interference detection; satellite communication; generative AI (GenAI)
Résumé :
[en] Recent advancements in satellite communications have highlighted the challenge of interference detection, especially with the new generation of non-geostationary orbit satellites (NGSOs) that share the same frequency bands as legacy geostationary orbit satellites (GSOs). Despite existing radio regulations during the filing stage, this heightened congestion in the spectrum is likely to lead to instances of interference during real-time operations. This paper addresses the NGSO-to-GSO interference problem by proposing advanced artificial intelligence (AI) models to detect interference events. In particular, we focus on the downlink interference case, where signals from low-Earth orbit satellites (LEOs) potentially impact the signals received at the GSO ground stations (GGSs). In addition to the widely used autoencoder-based models (AEs), we design, develop, and train two generative AI-based models (GenAI), which are a variational autoencoder (VAE) and a transformer-based interference detector (TrID). These models generate samples of the expected GSO signal, whose error with respect to the input signal is used to flag interference. Actual satellite positions, trajectories, and realistic system parameters are used to emulate the interference scenarios and validate the proposed models. Numerical evaluation reveals that the models exhibit higher accuracy for detecting interference in the time-domain signal representations compared to the frequency-domain representations. Furthermore, the results demonstrate that TrID significantly outperforms the other models as well as the traditional energy detector (ED) approach, showing an increase of up to 31.23% in interference detection accuracy, offering an innovative and efficient solution to a pressing challenge in satellite communications.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SAIFALDAWLA, Almoatssimbillah  ;  University of Luxembourg
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg
LAGUNAS TARGARONA, Eva  ;  University of Luxembourg
BABIKIR MOHAMMAD ADAM, Abuzar  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
GenAI-based Models for NGSO Satellites Interference Detection
Date de publication/diffusion :
25 juin 2024
Titre du périodique :
IEEE Transactions on Machine Learning in Communications and Networking
eISSN :
2831-316X
Maison d'édition :
Institute of Electrical and Electronics Engineers (IEEE)
Volume/Tome :
2
Pagination :
904 - 924
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR16193290 - SmartSpace - Leveraging Artificial Intelligence To Empower The Next Generation Of Satellite Communications, 2021 (01/09/2022-31/08/2025) - Eva Lagunas
Intitulé du projet de recherche :
U-AGR-7111 - C21/IS/16193290/SmartSpace - LAGUNAS Eva
Organisme subsidiant :
Luxembourg National Research Fund
N° du Fonds :
C21/IS/16193290
Subventionnement (détails) :
This work was supported by Luxembourg National Research Fund (FNR) under the Project SmartSpace under Grant C21/IS/16193290.
Jeu de données :
NGSO to GSO’s Users Interference

Dataset Description: Time series of received signal (time and frequency domain)

Commentaire :
This dataset has been used in this work (please cite this reference in your work if you make use of this dataset): A. Saifaldawla, F. Ortiz, E. Lagunas, A. B. M. Adam and S. Chatzinotas, “GenAI-Based Models for NGSO Satellites Interference Detection,” in IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 904-924, 2024, doi: 10.1109/TMLCN.2024.3418933.
Disponible sur ORBilu :
depuis le 02 juillet 2024

Statistiques


Nombre de vues
241 (dont 39 Unilu)
Nombre de téléchargements
210 (dont 11 Unilu)

OpenCitations
 
0
citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu