Supporting Information video showing two 8CB shells heated from a disordered SmA state through the nematic phase and through the clearing into the isotropic phase, and then cooling back into the nematic phase.
[en] The transition from a nematic to an isotropic state in a self-closing spherical liquid crystal shell with tangential alignment is a stimulating phenomenon to investigate, as the topology dictates that the shell exhibits local isotropic points at all temperatures in the nematic phase range, in the form of topological defects. The defects may thus be expected to act as nucleation points for the phase transition upon heating beyond the bulk nematic stability range. Here we study this peculiar transition, theoretically and experimentally, for shells with two different configurations of four +1/2 defects, finding that the defects act as the primary nucleation points if they are co-localized in each other's vicinity. If the defects are instead spread out across the shell, they again act as nucleation points, albeit not necessarily the primary ones. Beyond adding to our understanding of how the orientational order-disorder transition can take place in the shell geometry, our results have practical relevance for, e.g., the use of curved liquid crystals in sensing applications or for liquid crystal elastomer actuators in shell shape, undergoing a shape change as a result of the nematic-isotropic transition.
Disciplines :
Physics
Author, co-author :
Han, Yucen ; Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
LAGERWALL, Jan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Majumdar, Apala ; Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
External co-authors :
yes
Language :
English
Title :
Topological defects as nucleation points of the nematic-isotropic phase transition in liquid crystal shells
University of Strathclyde Alexander von Humboldt-Stiftung
Funding number :
RPG-2021-401; RPG-2021-401
Funding text :
The raw video footage used for the experimental part was obtained by Dr. JungHyun Noh in the context of a different research project while she was a Ph.D. candidate under the supervision of J.L. A.M. is supported by the University of Strathclyde New Professors Fund, the Alexander von Humboldt Foundation, and a Leverhulme Research Project Grant No. RPG-2021-401. Y.H. is supported by the Sir David Anderson Bequest Award at the University of Strathclyde and a Leverhulme Project Research Grant No. RPG-2021-401. Y.H. also thanks J.L.'s group members Yong Geng, Yansong Zhang, and Xu Ma for interesting discussions.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993), Vol. 83.
G. Iannacchione and D. Finotello, Calorimetric study of phase transitions in confined liquid crystals, Phys. Rev. Lett. 69, 2094 (1992) 0031-9007 10.1103/PhysRevLett.69.2094.
T. Jin, B. Zalar, A. Lebar, M. Vilfan, S. Zumer, and D. Finotello, Anchoring and structural transitions as a function of molecular length in confined liquid crystals, Eur. Phys. J. E 16, 159 (2005) 1292-8941 10.1140/epje/e2005-00017-x.
E. Enz, U. Baumeister, and J. Lagerwall, Coaxial electrospinning of liquid crystal-containing poly(vinyl pyrrolidone) microfibers, Beilstein J. Org. Chem. 5, 58 (2009) 1860-5397 10.3762/bjoc.5.58.
S. Kralj and S. Žumer, Smectic-A structures in submicrometer cylindrical cavities, Phys. Rev. E 54, 1610 (1996) 1063-651X 10.1103/PhysRevE.54.1610.
T. Lopez-Leon and A. Fernandez-Nieves, Drops and shells of liquid crystal, Colloid Polym. Sci. 289, 345 (2011) 0303-402X 10.1007/s00396-010-2367-7.
M. Urbanski, C. G. Reyes, J. Noh, A. Sharma, Y. Geng, V. S. R. Jampani, and J. P. Lagerwall, Liquid crystals in micron-scale droplets, shells and fibers, J. Phys.: Condens. Matter 29, 133003 (2017) 0953-8984 10.1088/1361-648X/aa5706.
H.-L. Liang, S. Schymura, P. Rudquist, and J. Lagerwall, Nematic-smectic transition under confinement in liquid crystalline colloidal shells, Phys. Rev. Lett. 106, 247801 (2011) 0031-9007 10.1103/PhysRevLett.106.247801.
T. Lopez-Leon, A. Fernandez-Nieves, M. Nobili, and C. Blanc, Nematic-smectic transition in spherical shells, Phys. Rev. Lett. 106, 247802 (2011) 0031-9007 10.1103/PhysRevLett.106.247802.
D. Seč, T. Lopez-Leon, M. Nobili, C. Blanc, A. Fernandez-Nieves, M. Ravnik, and S. Zumer, Defect trajectories in nematic shells: Role of elastic anisotropy and thickness heterogeneity, Phys. Rev. E 86, 020705 (R) (2012) 1539-3755 10.1103/PhysRevE.86.020705.
H.-L. Liang, J. Noh, R. Zentel, P. Rudquist, and J. Lagerwall, Tuning the defect configurations in nematic and smectic liquid crystalline shells, Philos. Trans. R. Soc. A 371, 20120258 (2013) 1364-503X 10.1098/rsta.2012.0258.
A. Fernandez-Nieves, V. Vitelli, A. S. Utada, D. R. Link, M. Marquez, D. R. Nelson, and D. A. Weitz, Novel defect structures in nematic liquid crystal shells, Phys. Rev. Lett. 99, 157801 (2007) 0031-9007 10.1103/PhysRevLett.99.157801.
T. Lopez-Leon, V. Koning, K. Devaiah, V. Vitelli, and A. Fernandez-Nieves, Frustrated nematic order in spherical geometries, Nat. Phys. 7, 391 (2011) 1745-2473 10.1038/nphys1920.
S. Alama, L. Bronsard, and X. Lamy, Minimizers of the Landau-de Gennes energy around a spherical colloid particle, Arch. Ration. Mech. Anal. 222, 427 (2016) 0003-9527 10.1007/s00205-016-1005-z.
M. Ravnik and S. Žumer, Landau-de Gennes modeling of nematic liquid crystal colloids, Liq. Cryst. 36, 1201 (2009) 0267-8292 10.1080/02678290903056095.
N. J. Mottram and S. J. Hogan, Disclination core structure and induced phase change in nematic liquid crystals, Philos. Trans. R. Soc. London, Ser. A 355, 2045 (1997) 1364-503X 10.1098/rsta.1997.0106.
N. Mottram and T. Sluckin, Defect-induced melting in nematic liquid crystals, Liq. Cryst. 27, 1301 (2000) 0267-8292 10.1080/026782900423340.
N. J. Mottram and C. J. Newton, Introduction to Q-tensor theory, arXiv:1409.3542.
A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory, Eur. J. Appl. Math. 21, 181 (2010) 0956-7925 10.1017/S0956792509990210.
Y. Ishii, Y. Zhou, K. He, Y. Takanishi, J. Yamamoto, J. de Pablo, and T. Lopez-Leon, Structural transformations in tetravalent nematic shells induced by a magnetic field, Soft Matter 16, 8169 (2020) 1744-683X 10.1039/D0SM00340A.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.109.064702 for experimental video for heating 8CB shells from SmA to N (nematic) to isotropic and cooling back to N.
J. Noh and J. P. Lagerwall, Topological defect-guided regular stacking of focal conic domains in hybrid-aligned smectic liquid crystal shells, Crystals 11, 913 (2021) 2073-4352 10.3390/cryst11080913.
A. Majumdar and Z. Arghir, Landau-de Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal. 196, 227 (2010) 0003-9527 10.1007/s00205-009-0249-2.
L. M. Kells, W. F. Kern, and J. R. Bland, Plane and Spherical Trigonometry (McGraw Hill Book Company, Inc., New York, London, 1940).
P. Gilbert and A. Giacomin, Transport phenomena in bispherical coordinates, Phys. Fluids 31, 021208 (2019) 1070-6631 10.1063/1.5054581.
F. C. Frank, I. Liquid crystals. On the theory of liquid crystals, Discuss. Faraday Soc. 25, 19 (1958) 0366-9033 10.1039/df9582500019.
C. Oseen, The theory of liquid crystals, Trans. Faraday Soc. 29, 883 (1933) 0014-7672 10.1039/tf9332900883.
K. Weiss, C. Wöll, and D. Johannsmann, Orientation of thin liquid crystal films on buffed polyimide alignment layers: A near-edge x-ray absorption fine structure investigation, J. Chem. Phys. 113, 11297 (2000) 0021-9606 10.1063/1.1287908.
D. Sharma, Non-isothermal kinetics of melting and nematic to isotropic phase transitions of 5CB liquid crystal, J. Therm. Anal. Calorim. 102, 627 (2010) 1388-6150 10.1007/s10973-010-0837-2.
Y.-K. Kim, S. V. Shiyanovskii, and O. D. Lavrentovich, Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals, J. Phys.: Condens. Matter 25, 404202 (2013) 0953-8984 10.1088/0953-8984/25/40/404202.
S. Faetti and V. Palleschi, Nematic-isotropic interface of some members of the homologous series of 4-cyano-4'-(n-alkyl) biphenyl liquid crystals, Phys. Rev. A 30, 3241 (1984) 0556-2791 10.1103/PhysRevA.30.3241.
J. H. Noh, Y. Wang, H.-L. Liang, V. S. R. Jampani, A. Majumdar, and J. P. F. Lagerwall, Dynamic tuning of the director field in liquid crystal shells using block copolymers, Phys. Rev. Res. 2, 033160 (2020) 2643-1564 10.1103/PhysRevResearch.2.033160.
X. Ma, Y. Han, Y. Zhang, Y. Geng, A. Majumdar, and J. Lagerwall, Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsions, Nat. Commun. 15, 1404 (2024) 2041-1723 10.1038/s41467-024-45674-5.
G. Durey, Y. Ishii, and T. Lopez-Leon, Temperature-driven anchoring transitions at liquid crystal/water interfaces, Langmuir 36, 9368 (2020) 0743-7463 10.1021/acs.langmuir.0c00985.
E.-K. Fleischmann, H.-L. Liang, N. Kapernaum, F. Giesselmann, J. P. F. Lagerwall, and R. Zentel, One-piece micropumps from liquid crystalline core-shell particles, Nat. Commun. 3, 1178 (2012) 2041-1723 10.1038/ncomms2193.
A. Sharma, A. M. Stoffel, and J. P. Lagerwall, Liquid crystal elastomer shells with topological defect-defined actuation: Complex shape morphing, opening/closing, and unidirectional rotation, J. Appl. Phys. 129, 174701 (2021) 0021-8979 10.1063/5.0044920.
E. Ramou and A. C. A. Roque, Textural landscapes of voc-sensitive chiral liquid crystal-based materials, Appl. Phys. Rev. 10, 011411 (2023) 1931-9401 10.1063/5.0136551.
R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, Chemical and biological sensing using liquid crystals, Liq. Cryst. Rev. 1, 29 (2013) 2168-0396 10.1080/21680396.2013.769310.
J. Nocedal and S. J. Wright, Numerical Optimization (Springer, New York, 1999).