Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning
Thinh Ngo, Duc; Piamrat, Kandaraj; AOUEDI, Ons et al.
2024In FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning
Peer reviewed
 

Documents


Texte intégral
2405.08843v1.pdf
Preprint Auteur (382.37 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Network traffic prediction; me series data; spatiotemporal forecasting; graph neural networks; transfer learning
Résumé :
[en] From a telecommunication standpoint, the surge in users and services challenges next-generation networks with escalating traffic demands and limited resources. Accurate traffic prediction can offer network operators valuable insights into network conditions and suggest optimal allocation policies. Recently, spatio-temporal forecasting, employing Graph Neural Networks (GNNs), has emerged as a promising method for cellular traffic prediction. However, existing studies, inspired by road traffic forecasting formulations, overlook the dynamic deployment and removal of base stations, requiring the GNN-based forecaster to handle an evolving graph. This work introduces a novel inductive learning scheme and a generalizable GNN-based forecasting model that can process diverse graphs of cellular traffic with one-time training. We also demonstrate that this model can be easily leveraged by transfer learning with minimal effort, making it applicable to different areas. Experimental results show up to 9.8% performance improvement compared to the state-of-the-art, especially in rare-data settings with training data reduced to below 20%.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Thinh Ngo, Duc;  STACK
Piamrat, Kandaraj;  LS2N, STACK
AOUEDI, Ons  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Hassan, Thomas
Raipin-Parvédy, Philippe
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning
Date de publication/diffusion :
2024
Nom de la manifestation :
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2024)
Lieu de la manifestation :
Valencia, Espagne
Date de la manifestation :
2–5 September 2024
Titre de l'ouvrage principal :
FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 21 juin 2024

Statistiques


Nombre de vues
97 (dont 10 Unilu)
Nombre de téléchargements
38 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu