DBS-TMS paired-pulse mapping; Parkinson’s disease; TMS-EEG mapping; TMS-EMG mapping; deep brain stimulation; state-dependent mapping; transcranial magnetic stimulation; Neuroscience (all)
Abstract :
[en] [en] INTRODUCTION: Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders.
METHODS: Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol.
RESULTS: In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms).
CONCLUSION: Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Disciplines :
Neurosciences & behavior
Author, co-author :
Passera, Brice; CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France ; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France ; Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
Harquel, Sylvain; CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France ; CNRS, INSERM, IRMaGe, Grenoble, France ; Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
Chauvin, Alan; CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
Gérard, Pauline; CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
LAI, Lisa ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Health and Behaviour ; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
David, Olivier; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France ; Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
Raffin, Estelle; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France ; Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
External co-authors :
yes
Language :
English
Title :
Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation.
This work was funded by the Agence Nationale pour la Recherche grant “ANR-15-CE37-0015-1” and by NeuroCoG IDEX UGA in the framework of the “Investissements d’avenir” program (ANR-15-IDEX-02). Data were acquired on a platform of France Life Imaging Network partly funded by the grant “ANR-11-INBS-0006.”
Alexander G. E. DeLong M. R. Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381. doi: 10.1146/annurev.ne.09.030186.002041
Alosaimi F. Boonstra J. T. Tan S. Temel Y. Jahanshahi A. (2022). The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson’s disease. Front. Neurosci 16:998932. doi: 10.3389/fnins.2022.998932
Amboni M. Cozzolino A. Longo K. Picillo M. Barone P. (2008). Freezing of gait and executive functions in patients with Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 23, 395–400. doi: 10.1002/mds.21850
Aron A. R. Herz D. M. Brown P. Forstmann B. U. Zaghloul K. (2016). Frontosubthalamic circuits for control of action and cognition. J. Neurosci. 36, 11489–11495. doi: 10.1523/JNEUROSCI.2348-16.2016, PMID: 27911752
Ashby P. Paradiso G. Saint-Cyr J. A. Chen R. Lang A. E. Lozano A. M. (2001). Potentials recorded at the scalp by stimulation near the human subthalamic nucleus. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 112, 431–437. doi: 10.1016/s1388-2457(00)00532-0, PMID: 11222963
Awiszus F. (2011). Fast estimation of transcranial magnetic stimulation motor threshold: is it safe? Brain Stimulat. 4:58–9; discussion 60–63. doi: 10.1016/j.brs.2010.09.004
Bashir S. Perez J. M. Horvath J. C. Pascual-Leone A. (2013). Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 30, 390–395. doi: 10.1097/WNP.0b013e31829dda6b, PMID: 23912579
Berardelli A. Rothwell J. C. Thompson P. D. Hallett M. (2001). Pathophysiology of bradykinesia in Parkinson’s disease. Brain J. Neurol. 124, 2131–2146. doi: 10.1093/brain/124.11.2131
Blasi G. Goldberg T. E. Weickert T. Das S. Kohn P. Zoltick B. et al. (2006). Brain regions underlying response inhibition and interference monitoring and suppression. Eur. J. Neurosci. 23, 1658–1664. doi: 10.1111/j.1460-9568.2006.04680.x, PMID: 16553630
Boyadjian A. Tyč F. Allam N. Brasil-Neto J. P. (2011). Writer’s cramp: cortical excitability in tasks involving proximo-distal coordination. Acta Physiol. Oxf. Engl. 203, 321–330. doi: 10.1111/j.1748-1716.2011.02312.x, PMID: 21624096
Bromberg-Martin E. S. Matsumoto M. Hikosaka O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834. doi: 10.1016/j.neuron.2010.11.022, PMID: 21144997
Brown R. G. Marsden C. D. (1988). Internal versus external cues and the control of attention in Parkinson’s disease. Brain J. Neurol. 111, 323–345. doi: 10.1093/brain/111.2.323
Buchanan R. Darrow D. Meier K. Robinson J. Schiehser D. Glahn D. et al. (2014). Changes in GABA and glutamate concentrations during memory tasks in patients with Parkinson’s disease undergoing DBS surgery. Front. Hum. Neurosc. 8:00081. doi: 10.3389/fnhum.2014.00081
Bungert A. Antunes A. Espenhahn S. Thielscher A. (2017). Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position. Cereb. Cortex 27, 5083–5094. doi: 10.1093/cercor/bhw292, PMID: 27664963
Cantello R. Tarletti R. Civardi C. (2002). Transcranial magnetic stimulation and Parkinson’s disease. Brain Res. Brain Res. Rev. 38, 309–327. doi: 10.1016/S0165-0173(01)00158-8
Cattaneo Z. Silvanto J. (2008). Time course of the state-dependent effect of transcranial magnetic stimulation in the TMS-adaptation paradigm. Neurosci. Lett. 443, 82–85. doi: 10.1016/j.neulet.2008.07.051, PMID: 18672027
Chase A. (2014). Evaluation of ALS via transcranial magnetic stimulation. Nat. Rev. Neurol. 10:485. doi: 10.1038/nrneurol.2014.144, PMID: 25112507
Chen W. de Hemptinne C. Miller A. M. Leibbrand M. Little S. J. Lim D. A. et al. (2020). Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. Neuron 106, 579–588.e3. doi: 10.1016/j.neuron.2020.02.012, PMID: 32155442
Chen R. Kumar S. Garg R. R. Lang A. E. (2001). Impairment of motor cortex activation and deactivation in Parkinson’s disease. J. Int. Fed. Clin. Neurophysiol. 112, 600–607. doi: 10.1016/s1388-2457(01)00466-7
Chiken S. Nambu A. (2014). Disrupting neuronal transmission: mechanism of DBS? Front. Syst. Neurosci. 8:33. doi: 10.3389/fnsys.2014.00033, PMID: 24672437
Cohen M. L. Schwab N. A. Price C. C. Heilman K. M. (2015). Impaired switching from self-prepared actions in mild Parkinson disease. JPD 5, 961–970. doi: 10.3233/JPD-150672
Cunic D. Roshan L. Khan F. I. Lozano A. M. Lang A. E. Chen R. (2002). Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease. Neurology 58, 1665–1672. doi: 10.1212/wnl.58.11.1665
Darmani G. Ziemann U. (2019). Pharmacophysiology of TMS-evoked EEG potentials: a mini-review. Brain Stimulat. 12, 829–831. doi: 10.1016/j.brs.2019.02.021, PMID: 30837122
de Graaf T. A. Koivisto M. Jacobs C. Sack A. T. (2014). The chronometry of visual perception: review of occipital TMS masking studies. Neurosci. Biobehav. Rev. 45, 295–304. doi: 10.1016/j.neubiorev.2014.06.017, PMID: 25010557
Dejean C. Hyland B. Arbuthnott G. (2009). Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia. Cereb. Cortex 19, 1055–1063. doi: 10.1093/cercor/bhn149, PMID: 18787234
Devergnas A. Wichmann T. (2011). Cortical potentials evoked by deep brain stimulation in the subthalamic area. Front. Syst. Neurosci. 5:30. doi: 10.3389/fnsys.2011.00030, PMID: 21625611
Dubbioso R. Raffin E. Karabanov A. Thielscher A. Siebner H. R. (2017). Centre-surround organization of fast sensorimotor integration in human motor hand area. NeuroImage 158, 37–47. doi: 10.1016/j.neuroimage.2017.06.063, PMID: 28669907
Duecker F. Graaf T.A. De Jacobs C. Sack A.T., (2013). Time- and task-dependent non-neural effects of real and sham TMS. PLoS One 8,:e73813. doi: 10.1371/journal.pone.0073813, PMID: 24040080
Dunovan K. Lynch B. Molesworth T. Verstynen T. (2015). Competing basal ganglia pathways determine the difference between stopping and deciding not to go. elife 4:e08723. doi: 10.7554/eLife.08723, PMID: 26402462
Ficarella S. C. Battelli L. (2019). Motor preparation for action inhibition: a review of single pulse TMS studies using the Go/NoGo paradigm. Front. Psychol. 10:340. doi: 10.3389/fpsyg.2019.00340
Fierro B. Brighina F. D’Amelio M. Daniele O. Lupo I. Ragonese P. et al. (2008). Motor intracortical inhibition in PD: L-DOPA modulation of high-frequency rTMS effects. Exp. Brain Res. 184, 521–528. doi: 10.1007/s00221-007-1121-y
Fraix V. Pollak P. Vercueil L. Benabid A.-L. Mauguière F. (2008). Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease. Clin. Neurophysiol. 119, 2513–2518. doi: 10.1016/j.clinph.2008.07.217
Galvan A. Devergnas A. Wichmann T. (2015). Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front. Neuroanat. 9:5. doi: 10.3389/fnana.2015.00005
Gaffney C. J. Drinkwater A. Joshi S. D. O’Hanlon B. Robinson A. Sands K.-A. et al. (2021). Short-term immobilization promotes a rapid loss of motor evoked potentials and strength that is not rescued by rTMS treatment. Front. Hum. Neurosci. 15:640642. doi: 10.3389/fnhum.2021.640642, PMID: 33981206
Gilio F. (2003). Abnormalities of motor cortex excitability preceding movement in patients with dystonia. Brain 126, 1745–1754. doi: 10.1093/brain/awg188, PMID: 12821524
Grandi L. C. Di Giovanni G. Galati S. (2018). Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. J. Neurosci. Methods 308, 205–218. doi: 10.1016/j.jneumeth.2018.08.012
Groiss S. J. Wojtecki L. Südmeyer M. Schnitzler A. (2009). Deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2, 20–28. doi: 10.1177/1756285609339382, PMID: 21180627
Hallett M. (2008). The intrinsic and extrinsic aspects of freezing of gait. Mov. Disord. Off. J. Mov. Disord. Soc. 23, S439–S443. doi: 10.1002/mds.21836, PMID: 18668625
Hamani C. Florence G. Heinsen H. Plantinga B. R. Temel Y. Uludag K. et al. (2017). Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives. eNeuro 4:ENEURO.0140-17.2017. doi: 10.1523/ENEURO.0140-17.2017, PMID: 28966978
Hanajima R. Ashby P. Lozano A. M. Lang A. E. Chen R. (2004). Single pulse stimulation of the human subthalamic nucleus facilitates the motor cortex at short intervals. J. Neurophysiol. 92, 1937–1943. doi: 10.1152/jn.00239.2004, PMID: 15152016
Harquel S. Bacle T. Beynel L. Marendaz C. Chauvin A. David O. (2016a). Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: towards functional cytoarchitectonics. NeuroImage 135, 115–124. doi: 10.1016/j.neuroimage.2016.05.009, PMID: 27153976
Harquel S. Beynel L. Guyader N. Marendaz C. David O. Chauvin A. (2016b). CortExTool: A toolbox for processing motor cortical excitability measurements by transcranial magnetic stimulation. Available at: https://hal.science/hal-01390016
Harquel S. Diard J. Raffin E. Passera B. Dall’Igna G. Marendaz C. et al. (2017). Automatized set-up procedure for transcranial magnetic stimulation protocols. NeuroImage 153, 307–318. doi: 10.1016/j.neuroimage.2017.04.001
Heremans E. Nieuwboer A. Spildooren J. Vandenbossche J. Deroost N. Soetens E. et al. (2013). Cognitive aspects of freezing of gait in Parkinson’s disease: a challenge for rehabilitation. J. Neural Transm. Vienna Austria 120, 543–557. doi: 10.1007/s00702-012-0964-y, PMID: 23328947
Ilić T. V. Meintzschel F. Cleff U. Ruge D. Kessler K. R. Ziemann U. (2002). Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J. Physiol. 545, 153–167. doi: 10.1113/jphysiol.2002.030122, PMID: 12433957
Jahanshahi M. Jenkins I. H. Brown R. G. Marsden C. D. Passingham R. E. Brooks D. J. (1995). Self-initiated versus externally triggered movements. I. an investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain J. Neurol. 118, 913–933. doi: 10.1093/brain/118.4.913, PMID: 7655888
Johnson L. A. Wang J. Nebeck S. D. Zhang J. Johnson M. D. Vitek J. L. (2020). Direct activation of primary motor cortex during subthalamic but not pallidal deep brain stimulation. J. Neurosci. 40, 2166–2177. doi: 10.1523/JNEUROSCI.2480-19.2020, PMID: 32019827
Kalia L. V. Lang A. E. (2015). Parkinson’s disease. Lancet 386, 896–912. doi: 10.1016/S0140-6736(14)61393-3
Kenner N. M. Mumford J. A. Hommer R. E. Skup M. Leibenluft E. Poldrack R. A. (2010). Inhibitory motor control in response stopping and response switching. J. Neurosci. 30, 8512–8518. doi: 10.1523/JNEUROSCI.1096-10.2010, PMID: 20573898
Khedr E. M. Farweez H. M. Islam H. (2003). Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur. J. Neurol. 10, 567–572. doi: 10.1046/j.1468-1331.2003.00649.x
Kleim J. A. Kleim E. D. Cramer S. C. (2007). Systematic assessment of training-induced changes in corticospinal output to hand using frameless transcranial magnetic stimulation. Nat. Protoc. 2, 1675–1684. doi: 10.1038/nprot.2007.206
Kleiner M. Brainard D. Pelli D. Ingling A. Murray R. Broussard C. (2007). What’s new in psychtoolbox-3. Perception 36, 1–16. doi: 10.1068/v070821
Koch G. Rothwell J. C. (2009). TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behav. Brain Res. 202, 147–152. doi: 10.1016/j.bbr.2009.03.023, PMID: 19463695
Kühn A. A. Meyer B.-U. Trottenberg T. Brandt S. A. Schneider G. H. Kupsch A. (2003). Modulation of motor cortex excitability by pallidal stimulation in patients with severe dystonia. Neurology 60, 768–774. doi: 10.1212/01.wnl.0000044396.64752.4c, PMID: 12629231
Kuriakose R. Saha U. Castillo G. Udupa K. Ni Z. Gunraj C. et al. (2010). The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease. Cereb. Cortex 20, 1926–1936. doi: 10.1093/cercor/bhp269, PMID: 20019146
Leodori G. De Bartolo M. I. Fabbrini A. Costanzo M. Mancuso M. Belvisi D. et al. (2022). The role of the motor cortex in tremor suppression in Parkinson’s disease. J. Parkinsons Dis. 12, 1957–1963. doi: 10.3233/JPD-223316, PMID: 35811537
Limousin P. Greene J. Pollak P. Rothwell J. Benabid A.-L. Frackowiak R. (1997). Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann. Neurol. 42, 283–291. doi: 10.1002/ana.410420303
Lozano A. M. Dostrovsky J. Chen R. Ashby P. (2002). Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol. 1, 225–231. doi: 10.1016/S1474-4422(02)00101-1
MacKinnon C. D. Webb R. M. Silberstein P. Tisch S. Asselman P. Limousin P. et al. (2005). Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson’s disease. Eur. J. Neurosci. 21, 1394–1402. doi: 10.1111/j.1460-9568.2005.03952.x, PMID: 15813949
Madsen K. H. Karabanov A. N. Krohne L. G. Safeldt M. G. Tomasevic L. Siebner H. R. (2019). No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm. Brain Stimul. 12, 1261–1270. doi: 10.1016/j.brs.2019.05.005
Monte-Silva K. Liebetanz D. Grundey J. Paulus W. Nitsche M. A. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J. Physiol. 588, 3415–3424. doi: 10.1113/jphysiol.2010.190181
Muir M. Prinsloo S. Michener H. Traylor J. I. Patel R. Gadot R. et al. (2022). TMS seeded diffusion tensor imaging tractography predicts permanent neurological deficits. Cancers 14:340. doi: 10.3390/cancers14020340, PMID: 35053503
Nazarova M. Novikov P. Ivanina E. Kozlova K. Dobrynina L. Nikulin V. V. (2021). Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test–retest reliability. Hum. Brain Mapp. 42, 2508–2528. doi: 10.1002/hbm.25383, PMID: 33682975
Ni Z. Udupa K. Hallett M. Chen R. (2019). Effects of deep brain stimulation on the primary motor cortex: insights from transcranial magnetic stimulation studies. Clin. Neurophysiol. 130, 558–567. doi: 10.1016/j.clinph.2018.10.020, PMID: 30527386
Numssen O. Zier A.-L. Thielscher A. Hartwigsen G. Knösche T. R. Weise K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage 245:118654. doi: 10.1016/j.neuroimage.2021.118654, PMID: 34653612
Oliveri M. Caltagirone C. Filippi M. M. Traversa R. Cicinelli P. Pasqualetti P. et al. (2000). Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex. J. Physiol. 529, 461–468. doi: 10.1111/j.1469-7793.2000.00461.x, PMID: 11101654
Oostenveld R. Fries P. Maris E. Schoffelen J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Electrophysiological Data [Research article]. Comput. Intell. Neurosci. doi: 10.1155/2011/156869
Papa S. M. Artieda J. Obeso J. A. (1991). Cortical activity preceding self-initiated and externally triggered voluntary movement. Mov. Disord. Off. J. Mov. Disord. Soc. 6, 217–224. doi: 10.1002/mds.870060305, PMID: 1922126
Parr-Brownlie L. C. Hyland B. I. (2005). Bradykinesia Induced by Dopamine D2 Receptor Blockade Is Associated with Reduced Motor Cortex Activity in the Rat. J. Neurosci. 25, 5700–5709. doi: 10.1523/JNEUROSCI.0523-05.2005
Pascual-Leone A. Valls-Solé J. Wassermann E. M. Hallett M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the motor cortex. Brain J. Neurol., 117, 847–858. doi: 10.1093/brain/117.4.847
Passera B. Chauvin A. Raffin E. Bougerol T. David O. Harquel S. (2022). Exploring the spatial resolution of TMS-EEG coupling on the sensorimotor region. NeuroImage 259:119419. doi: 10.1016/j.neuroimage.2022.119419, PMID: 35777633
Phielipp N. M. Saha U. Sankar T. Yugeta A. Chen R. (2017). Safety of repetitive transcranial magnetic stimulation in patients with implanted cortical electrodes. An ex-vivo study and report of a case. Clin. Neurophysiol. 128, 1109–1115. doi: 10.1016/j.clinph.2017.01.021, PMID: 28259678
Premoli I. Castellanos N. Rivolta D. Belardinelli P. Bajo R. Zipser C. et al. (2014). TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J. Neurosci. 34, 5603–5612. doi: 10.1523/JNEUROSCI.5089-13.2014, PMID: 24741050
Rae C. L. Hughes L. E. Anderson M. C. Rowe J. B. (2015). The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J. Neurosci. 35, 786–794. doi: 10.1523/JNEUROSCI.3093-13.2015, PMID: 25589771
Raffin E. Harquel S. Passera B. Chauvin A. Bougerol T. David O. (2020). Probing regional excitability via input-output properties using transcranial magnetic stimulation and electroencephalography coupling. Hum. Brain Mapp. 41. doi: 10.1002/hbm.24975
Raffin E. Pellegrino G. Di Lazzaro V. Thielscher A. Siebner H. R. (2015). Bringing transcranial mapping into shape: sulcus-aligned mapping captures motor somatotopy in human primary motor hand area. NeuroImage 120, 164–175. doi: 10.1016/j.neuroimage.2015.07.024, PMID: 26188259
Raffin E. Siebner H. R. (2019). Use-dependent plasticity in human primary motor hand area: synergistic interplay between training and immobilization. Cereb. Cortex 29, 356–371. doi: 10.1093/cercor/bhy226, PMID: 30364930
Rogasch N. C. Fitzgerald P. B. (2013). Assessing cortical network properties using TMS-EEG. Hum. Brain Mapp. 34, 1652–1669. doi: 10.1002/hbm.22016, PMID: 22378543
Rogasch N. C. Thomson R. H. Farzan F. Fitzgibbon B. M. Bailey N. W. Hernandez-Pavon J. C. et al. (2014). Removing artefacts from TMS-EEG recordings using independent component analsis: Importance fo assessing prefrontal and motor cortex network properties. NeuroImage 101, 425–439.
Schapira A. H. V. Chaudhuri K. R. Jenner P. (2017). Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450. doi: 10.1038/nrn.2017.62
Schor J. S. Gonzalez Montalvo I. Spratt P. W. Brakaj R. J. Stansil J. A. Twedell E. L. et al. (2022). Therapeutic deep brain stimulation disrupts movement-related subthalamic nucleus activity in parkinsonian mice. elife 11:e75253. doi: 10.7554/eLife.75253
Shang R. He L. Ma X. Ma Y. Li X. (2020). Connectome-Based Model Predicts Deep Brain Stimulation Outcome in Parkinson's Disease. Front. Comput. Neurosci. 14:571527. doi: 10.3389/fncom.2020.571527
Shukla V. K. Garg S. K. Kulkarni S. K. (1988). GABAergic, dopaminergic and cholinergic interaction in tremorine-induced tremors in mice. Methods Find. Exp. Clin. Pharmacol. 10, 27–31. PMID: 2895827
Siebner H. R. Funke K. Aberra A. S. Antal A. Bestmann S. Chen R. et al. (2022). Transcranial magnetic stimulation of the brain: what is stimulated? – a consensus and critical position paper. Clin. Neurophysiol. 140, 59–97. doi: 10.1016/j.clinph.2022.04.022, PMID: 35738037
Smith M.-C. Stinear C. M. (2016). Transcranial magnetic stimulation (TMS) in stroke: ready for clinical practice? J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 31, 10–14. doi: 10.1016/j.jocn.2016.01.034, PMID: 27394378
Spay C. Meyer G. Welter M.-L. Lau B. Boulinguez P. Ballanger B. (2019). Functional imaging correlates of akinesia in Parkinson’s disease: still open issues. NeuroImage Clin. 21:101644. doi: 10.1016/j.nicl.2018.101644, PMID: 30584015
Spildooren J. Vercruysse S. Desloovere K. Vandenberghe W. Kerckhofs E. Nieuwboer A. (2010). Freezing of gait in Parkinson’s disease: the impact of dual-tasking and turning. Mov. Disord. Off. J. Mov. Disord. Soc. 25, 2563–2570. doi: 10.1002/mds.23327, PMID: 20632376
Stefani A. Fedele E. Vitek J. Pierantozzi M. Galati S. Marzetti F. et al. (2011). The clinical efficacy of L-DOPA and STN-DBS share a common marker: reduced GABA content in the motor thalamus. Cell Death Dis. 2:e154. doi: 10.1038/cddis.2011.35, PMID: 21544093
Stokes M. G. Chambers C. D. Gould I. C. English T. McNaught E. McDonald O. et al. (2007). Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin. Neurophysiol. 118, 1617–1625. doi: 10.1016/j.clinph.2007.04.004, PMID: 17524764
Stokes M. G. Chambers C. D. Gould I. C. Henderson T. R. Janko N. E. Allen N. B. et al. (2005). Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J. Neurophysiol. 94, 4520–4527. doi: 10.1152/jn.00067.2005, PMID: 16135552
Surmeier D. J. Obeso J. A. Halliday G. M. (2017). Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 18, 101–113. doi: 10.1038/nrn.2016.178, PMID: 28104909
Swann N. C. Cai W. Conner C. R. Pieters T. A. Claffey M. P. George J. S. et al. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. NeuroImage 59, 2860–2870. doi: 10.1016/j.neuroimage.2011.09.049, PMID: 21979383
Taniwaki T. Yoshiura T. Ogata K. Togao O. Yamashita K. Kida H. et al. (2013). Disrupted connectivity of motor loops in Parkinson’s disease during self-initiated but not externally-triggered movements. Brain Res. 1512, 45–59. doi: 10.1016/j.brainres.2013.03.027
Tard C. Dujardin K. Bourriez J.-L. Destée A. Derambure P. Defebvre L. et al. (2014). Attention modulates step initiation postural adjustments in Parkinson freezers. Parkinsonism Relat. Disord. 20, 284–289. doi: 10.1016/j.parkreldis.2013.11.016, PMID: 24405757
Torres E. B. Heilman K. M. Poizner H. (2011). Impaired endogenously evoked automated reaching in Parkinson’s disease. J. Neurosci. 31, 17848–17863. doi: 10.1523/JNEUROSCI.1150-11.2011, PMID: 22159100
Tremblay S. Rogasch N. C. Premoli I. Blumberger D. M. Casarotto S. Chen R. et al. (2019). Clinical utility and prospective of TMS-EEG. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 130, 802–844. doi: 10.1016/j.clinph.2019.01.001, PMID: 30772238
Tysnes O.-B. Storstein A. (2017). Epidemiology of Parkinson’s disease. J. Neural Transm. Vienna Austria 124, 901–905. doi: 10.1007/s00702-017-1686-y
Udupa K. Bahl N. Ni Z. Gunraj C. Mazzella F. Moro E. et al. (2016). Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in parkinson’s disease. J. Neurosci. 36, 396–404. doi: 10.1523/JNEUROSCI.2499-15.2016, PMID: 26758832
Udupa K. Chen R. (2015). The mechanisms of action of deep brain stimulation and ideas for the future development. Prog. Neurobiol. 133, 27–49. doi: 10.1016/j.pneurobio.2015.08.001, PMID: 26296674
Underwood C. F. Parr-Brownlie L. C. (2021). Primary motor cortex in Parkinson’s disease: functional changes and opportunities for neurostimulation. Neurobiol. Dis. 147:105159. doi: 10.1016/j.nbd.2020.105159, PMID: 33152506
van Campen A. Neubert F.-X. Van Den Wildenberg W. Ridderinkhof K. R. Mars R. (2013). Paired-pulse transcranial magnetic stimulation reveals probability-dependent changes in functional connectivity between right inferior frontal cortex and primary motor cortex during go/no-go performance. Front. Hum. Neurosci. 7:736. doi: 10.3389/fnhum.2013.00736
van de Ruit M. Perenboom M. J. L. Grey M. J. (2015). TMS brain mapping in less than two minutes. Brain Stimulat. 8, 231–239. doi: 10.1016/j.brs.2014.10.020, PMID: 25556004
Vitrac C. Péron S. Frappé I. Fernagut P.-O. Jaber M. Gaillard A. et al. (2014). Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors. Front. Neural Circuits, 8:13. doi: 10.3389/fncir.2014.00013
Weaver K. E. Caldwell D. J. Cronin J. A. Kuo C.-H. Kogan M. Houston B. et al. (2020). Concurrent deep brain stimulation reduces the direct cortical stimulation necessary for motor output. Mov. Disord. 35, 2348–2353. doi: 10.1002/mds.28255, PMID: 32914888
Weiss Lucas C. Tursunova I. Neuschmelting V. Nettekoven C. Oros-Peusquens A.-M. Stoffels G. et al. (2017). Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. NeuroImage Clin. 13, 297–309. doi: 10.1016/j.nicl.2016.11.022, PMID: 28050345
Werheid K. Koch I. Reichert K. Brass M. (2007). Impaired self-initiated task preparation during task switching in Parkinson’s disease. Neuropsychologia 45, 273–281. doi: 10.1016/j.neuropsychologia.2006.07.007
Wessel J. R. Ghahremani A. Udupa K. Saha U. Kalia S. K. Hodaie M. et al. (2016). Stop-related subthalamic beta activity indexes global motor suppression in Parkinson’s disease. Mov. Disord. 31, 1846–1853. doi: 10.1002/mds.26732, PMID: 27474845
Wilson S. A. Thickbroom G. W. Mastaglia F. L. (1993). Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles. J. Neurol. Sci., 118.
Yang C. Guo Z. Peng H. Xing G. Chen H. McClure M. A. et al. (2018). Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson’s disease: a meta-analysis. Brain Behav. 8:e01132. doi: 10.1002/brb3.1132, PMID: 30264518
Yokoe M. Mano T. Maruo T. Hosomi K. Shimokawa T. Kishima H. et al. (2018). The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease: a double-blind crossover pilot study. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 47, 72–78. doi: 10.1016/j.jocn.2017.09.023, PMID: 29054329
Zhang R. Geng X. Lee T. M. C. (2017). Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis. Brain Struct. Funct. 222, 3973–3990. doi: 10.1007/s00429-017-1443-x, PMID: 28551777
Zhang F. Iwaki S. (2019). Common neural network for different functions: An investigation of proactive and reactive inhibition. Front. Behav. Neurosci. 13:124. doi: 10.3389/fnbeh.2019.00124