[en] AI-based automated hiring systems cover a wide range of tools
of varying complexity, from resume parsing tools to candidate
selection models. Their close interference in economic and social
life faces raising demands and investigations aiming to reduce
the potential discrimination they may cause. This article covers
the intersection of EU non-discrimination law and algorithmic
fairness in the context of automated hiring systems. The paper
analyzes the balance between equality of opportunity (formal and
substantive) and equality of outcome, critiques the focus on nonconservative group fairness in machine learning, and discusses
the legal implications of automated hiring systems under EU law.
Additionally, it highlights often committed fallacies in relation to
the process of de-biasing and advocates for a broader understanding
of fairness in machine learning that aligns with EU legal standards
and societal values
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Poe, Robert Lee ; Laboratorio Interdisciplinare Diritti e Regole (LIDER-Lab), Sant'Anna School of Advanced Studies, Italy
EL MESTARI, Soumia Zohra ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > IRiSC
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The Conflict Between Algorithmic Fairness and Non-Discrimination: An Analysis of Fair Automated Hiring
Date de publication/diffusion :
03 juin 2024
Nom de la manifestation :
The 2024 ACM Conference on Fairness, Accountability, and Transparency
Organisateur de la manifestation :
Association for Computing Machinery,New York NY, United States
Lieu de la manifestation :
Rio de Janeiro, Brésil
Date de la manifestation :
3rd June-6th June 2024
Manifestation à portée :
International
Titre du périodique :
Journal of the Association for Computing Machinery
1984. 84/635/EEC: Council recommendation of 13 December 1984 on the promotion of positive action for women. Official Journal of the European Communities., 34-35 pages. https://eur-lex. europa. eu/legal-content/en/TXT/?uri=CELEX: 31984H0635
2000. Directive 2000/43/EC of the European Parliament and of the Council of 29 June 2000 implementing the principle of equal treatment between persons irrespective of racial or ethnic origin. Official Journal of the European Communities., 22-26 pages. https://eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX: 32000L0043
2000. Directive 2000/78/EC of the European Parliament and of the Council of 27 November 2000 establishing a general framework for equal treatment in employment and occupation. Official Journal of the European Communities., 16-22 pages. https://eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX: 32000L0078
2004. Council Directive 2004/113/EC of 13 December 2004 implementing the principle of equal treatment between men and women in the access to and supply of goods and services. Official Journal of the European Union., 37-43 pages. https://eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:32004L0113
2006. Directive 2006/54/EC of the European Parliament and of the Council of 5 July 2006 on the implementation of the principle of equal opportunities and equal treatment of men and women in matters of employment and occupation. Official Journal of the European Union., 23-36 pages. https://eur-lex. europa. eu/legalcontent/ EN/TXT/?uri=CELEX:32006L0054
2012. Charter of Fundamental Rights of the European Union. Official Journal of the European Union., 391-407 pages. https://eur-lex. europa. eu/legal-content/ EN/TXT/?uri=CELEX%3A12012P%2FTXT
Falaah Arif Khan, Eleni Manis, and Julia Stoyanovich. 2022. Towards Substantive Conceptions of Algorithmic Fairness: Normative Guidance from Equal Opportunity Doctrines. In Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO '22). Association for Computing Machinery, New York, NY, USA, 1-10. https://doi. org/10. 1145/3551624. 3555303
Richard Arneson. 2015. Equality of Opportunity. In The Stanford Encyclopedia of Philosophy (summer 2015 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University. https://plato. stanford. edu/archives/sum2015/entries/equalopportunity/
Solon Barocas and Andrew D. Selbst. 2016. Big Data's Disparate Impact. California Law Review 104, 3 (2016), 671-732. https://www. jstor. org/stable/24758720 Publisher: California Law Review, Inc.
Joachim Baumann, Corinna Hertweck, Michele Loi, and Christoph Heitz. 2022. Distributive Justice as the Foundational Premise of Fair ML: Unification, Extension, and Interpretation of Group Fairness Metrics. (2022). https://doi. org/10. 48550/ARXIV. 2206. 02897 Publisher: arXiv Version Number: 2.
MBell and European Commission. 2007. Putting Equality into Practice: What role for positive action? Office for Official Publications of the European Communities (2007).
Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. 2017. A Convex Framework for Fair Regression. (2017). https://doi. org/10. 48550/ARXIV. 1706. 02409 Publisher: arXiv Version Number: 1.
Reuben Binns. 2020. On the apparent conflict between individual and group fairness. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT '20). Association for Computing Machinery, New York, NY, USA, 514-524. https://doi. org/10. 1145/3351095. 3372864
Alycia N. Carey and Xintao Wu. 2023. The statistical fairness field guide: perspectives from social and formal sciences. AI and Ethics 3, 1 (Feb. 2023), 1-23. https://doi. org/10. 1007/s43681-022-00183-3
Alessandro Castelnovo, Riccardo Crupi, Greta Greco, Daniele Regoli, Ilaria Giuseppina Penco, and Andrea Claudio Cosentini. 2022. A clarification of the nuances in the fairness metrics landscape. Scientific Reports 12, 1 (March 2022), 4209. https://doi. org/10. 1038/s41598-022-07939-1 Number: 1 Publisher: Nature Publishing Group.
Irene Chen, Fredrik D Johansson, and David Sontag. 2018. Why Is My Classifier Discriminatory?. In Advances in Neural Information Processing Systems, Vol. 31. Curran Associates, Inc. https://papers. nips. cc/paper/2018/hash/ 1f1baa5b8edac74eb4eaa329f14a0361-Abstract. html
European Commission, Social Affairs Directorate-General for Employment, Inclusion, and M De Vos. 2007. Beyond formal equality: positive action under directives 2000/43/EC and 2000/78/EC. Publications Office.
A. Feder Cooper, Ellen Abrams, and NA NA. 2021. Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES '21). Association for Computing Machinery, New York, NY, USA, 46-54. https://doi. org/10. 1145/3461702. 3462519
Court of Justice of the European Union. 1995. Judgment of the Court of 17 October 1995.-Eckhard Kalanke v Freie Hansestadt Bremen.-Reference for a preliminary ruling: Bundesarbeitsgericht-Germany. European Court reports 1995 (1995), I-03051. https://eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX: 61993CJ0450
Court of Justice of the European Union. 1997. Judgment of the Court of 11 November 1997.-Hellmut Marschall v Land Nordrhein-Westfalen.-Reference for a preliminary ruling: Verwaltungsgericht Gelsenkirchen-Germany. European Court reports 1997 (1997), I-06363. https://eur-lex. europa. eu/legal-content/EN/ TXT/?uri=CELEX:61995CJ0409
Court of Justice of the European Union. 2000. Judgment of the Court (Fifth Chamber) of 6 July 2000.-Katarina Abrahamsson and Leif Anderson v Elisabet Fogelqvist.-Reference for a preliminary ruling: Överklagandenämnden för Högskolan-Sweden. European Court reports 2000 (2000), I-05539. https://eurlex. europa. eu/legal-content/EN/TXT/?uri=CELEX:61998CJ0407
Court of Justice of the European Union. 2000. Judgment of the Court of 28 March 2000.-Georg Badeck and Others, interveners: Hessische Ministerpräsident and Landesanwalt beim Staatsgerichtshof des Landes Hessen.-Reference for a preliminary ruling: Staatsgerichtshof des Landes Hessen-Germany. European Court reports 2000 (2000), I-01875. https://eur-lex. europa. eu/legal-content/EN/ TXT/?uri=CELEX:61997CJ0158
Court of Justice of the European Union. 2002. Judgment of the Court of 19 March 2002.-H. Lommers v Minister van Landbouw, Natuurbeheer en Visserij.-Reference for a preliminary ruling: Centrale Raad van Beroep-Netherlands. European Court reports 2002 (2002), I-02891. https://curia. europa. eu/juris/liste. jsf?language=en&num=C-476/99
Mirjam de Mol. 2011. The Novel Approach of the CJEU on the Horizontal Direct Effect of the EU Principle of Non-Discrimination: (Unbridled) Expansionism of EU Law? Maastricht Journal of European and Comparative Law 18, 1-2 (March 2011), 109-135. https://doi. org/10. 1177/1023263X1101800106 Publisher: SAGE Publications Ltd.
Marc De Vos. 2020. The European Court of Justice and the march towards substantive equality in European Union anti-discrimination law. International Journal of Discrimination and the Law 20, 1 (March 2020), 62-87. https://doi. org/ 10. 1177/1358229120927947 Publisher: SAGE Publications Ltd.
Catherine D'Ignazio and Lauren Klein. 2020. 6. The Numbers Don't Speak for Themselves. Data Feminism (March 2020). https://data-feminism. mitpress. mit. edu/pub/czq9dfs5/release/3
Sanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu, and Kush R. Varshney. 2020. Is there a trade-off between fairness and accuracy? a perspective using mismatched hypothesis testing. In Proceedings of the 37th International Conference on Machine Learning (ICML'20). JMLR. org, 2803-2813.
Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS '12). Association for Computing Machinery, New York, NY, USA, 214-226. https://doi. org/10. 1145/2090236. 2090255
European Commission. 2021. Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. COM(2021) 206 final. https://eur-lex. europa. eu/legal-content/EN/TXT/?uri= CELEX:52021PC0206
Brian Everitt. 2006. The Cambridge Dictionary of Statistics (3rd ed ed.). Cambridge University Press, Cambridge, UK. http://site. ebrary. com/id/10150287 OCLC: 161828328.
Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15). Association for Computing Machinery, New York, NY, USA, 259-268. https://doi. org/10. 1145/2783258. 2783311
Will Fleisher. 2021. What's Fair about Individual Fairness?. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES '21). Association for Computing Machinery, New York, NY, USA, 480-490. https://doi. org/10. 1145/ 3461702. 3462621
Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2016. On the (im)possibility of fairness. https://doi. org/10. 48550/arXiv. 1609. 07236 arXiv:1609. 07236 [cs, stat].
Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2021. The (Im)possibility of fairness: different value systems require different mechanisms for fair decision making. Commun. ACM 64, 4 (March 2021), 136-143. https://doi. org/10. 1145/3433949
Timnit Gebru. 2020. Race and Gender. In The Oxford Handbook of Ethics of AI, Markus D. Dubber, Frank Pasquale, and Sunit Das (Eds.). Oxford University Press, 0. https://doi. org/10. 1093/oxfordhb/9780190067397. 013. 16
Thibaut Le Gouic, Jean-Michel Loubes, and Philippe Rigollet. 2020. Projection to Fairness in Statistical Learning. https://doi. org/10. 48550/arXiv. 2005. 11720 arXiv:2005. 11720 [cs, math, stat].
Philipp Hacker. 2018. Teaching Fairness to Artificial Intelligence: Existing and Novel Strategies Against Algorithmic Discrimination Under EU Law. https: //papers. ssrn. com/abstract=3164973
Sara Hajian and Josep Domingo-Ferrer. 2013. A Methodology for Direct and Indirect Discrimination Prevention in Data Mining. IEEE Transactions on Knowledge and Data Engineering 25, 7 (July 2013), 1445-1459. https://doi. org/10. 1109/ TKDE. 2012. 72 Conference Name: IEEE Transactions on Knowledge and Data Engineering.
H. L. A. Hart. 1957. Positivism and the Separation of Law and Morals. Harvard Law Review 71, 4 (1957), 593-629. https://heinonline. org/HOL/P?h=hein. journals/ hlr71&i=625
Friedrich August Hayek. 1976. The Constitution of Liberty. Routledge & Kegan Paul. Google-Books-ID: CMXanAEACAAJ.
David Hume. 1888. A Treatise of Human Nature. Oxford: The Clarendon Press. https://oll. libertyfund. org/title/bigge-a-treatise-of-human-nature
Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, and Bernhard Schölkopf. 2017. Avoiding Discrimination through Causal Reasoning. In Advances in Neural Information Processing Systems, Vol. 30. Curran Associates, Inc. https://papers. nips. cc/paper_files/paper/2017/hash/ f5f8590cd58a54e94377e6ae2eded4d9-Abstract. html
Michael P. Kim, Amirata Ghorbani, and James Zou. 2019. Multiaccuracy: Black-Box Post-Processing for Fairness in Classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES '19). Association for Computing Machinery, New York, NY, USA, 247-254. https://doi. org/10. 1145/3306618. 3314287
Caitlin Kuhlman, Latifa Jackson, and Rumi Chunara. 2020. No Computation without Representation: Avoiding Data and Algorithm Biases through Diversity. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20). Association for Computing Machinery, New York, NY, USA, 3593. https://doi. org/10. 1145/3394486. 3411074
Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual Fairness. In Advances in Neural Information Processing Systems, Vol. 30. Curran Associates, Inc. https://papers. nips. cc/paper_files/paper/2017/hash/ a486cd07e4ac3d270571622f4f316ec5-Abstract. html
Min Kyung Lee, Anuraag Jain, Hea Jin Cha, Shashank Ojha, and Daniel Kusbit. 2019. Procedural Justice in Algorithmic Fairness: Leveraging Transparency and Outcome Control for Fair Algorithmic Mediation. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (Nov. 2019), 182:1-182:26. https: //doi. org/10. 1145/3359284
Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. Comput. Surveys 54, 6 (July 2021), 115:1-115:35. https://doi. org/10. 1145/3457607
Aditya Krishna Menon and Robert C. Williamson. 2018. The cost of fairness in binary classification. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency. PMLR, 107-118. https://proceedings. mlr. press/v81/ menon18a. html ISSN: 2640-3498.
Colm O'Cinneide. 2006. Positive Action and the Limits of Existing Law. Maastricht Journal of European and Comparative Law 13, 3 (Sept. 2006), 351-364. https: //doi. org/10. 1177/1023263X0601300307 Publisher: SAGE Publications Ltd.
Dana Pessach and Erez Shmueli. 2022. A Review on Fairness in Machine Learning. Comput. Surveys 55, 3 (Feb. 2022), 51:1-51:44. https://doi. org/10. 1145/3494672
Plato, Harold North Fowler, W. R. M. Lamb, Robert Gregg Bury, and Paul Shorey. 1914. Plato in twelve volumes: with an English translation. W. Heinemann; Harvard University Press, London, Cambridge. OCLC: 25431534.
Manish Raghavan, Solon Barocas, Jon Kleinberg, and Karen Levy. 2020. Mitigating bias in algorithmic hiring: evaluating claims and practices. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT '20). Association for Computing Machinery, New York, NY, USA, 469-481. https: //doi. org/10. 1145/3351095. 3372828
Tim Räz. 2021. Group fairness: Independence revisited. In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency. 129-137.
Frederick Schauer. 2018. On Treating Unlike Cases Alike. Constitutional Commentary 33 (May 2018), 13. https://papers. ssrn. com/abstract=3183939
Andrew D. Selbst, Danah Boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet Vertesi. 2019. Fairness and Abstraction in Sociotechnical Systems. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT '19). Association for Computing Machinery, New York, NY, USA, 59-68. https://doi. org/10. 1145/3287560. 3287598
Thomas Sowell. 1987. A Conflict of Visions. W. Morrow. Google-Books-ID: Fp22AAAAIAAJ.
Jozefien Van Caeneghem. 2019. Legal Aspects of Ethnic Data Collection and Positive Action: The Roma Minority in Europe. Springer International Publishing, Cham. https://doi. org/10. 1007/978-3-030-23668-7
Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2021. Bias Preservation in Machine Learning: The Legality of Fairness Metrics Under EU Non-Discrimination Law. SSRN Electronic Journal (2021). https://doi. org/10. 2139/ ssrn. 3792772
Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2021. Why fairness cannot be automated: Bridging the gap between EU non-discrimination law and AI. Computer Law & Security Review 41 (July 2021), 105567. https://doi. org/10. 1016/ j. clsr. 2021. 105567
PeterWesten. 1982. The Empty Idea of Equality. Harvard Law Review 95, 3 (1982), 537-596. https://doi. org/10. 2307/1340593 Publisher: The Harvard Law Review Association.
White House Office of Science and Technology Policy. 2022. Blueprint for an AI Bill of Rights. The White House. https://www. whitehouse. gov/ostp/ai-bill-ofrights/
Michael Wick, swetasudha panda, and Jean-Baptiste Tristan. 2019. Unlocking Fairness: a Trade-off Revisited. In Advances in Neural Information Processing Systems, Vol. 32. Curran Associates, Inc. https://proceedings. neurips. cc/paper/ 2019/hash/373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract. html
Christo Wilson, Avijit Ghosh, Shan Jiang, Alan Mislove, Lewis Baker, Janelle Szary, Kelly Trindel, and Frida Polli. 2021. Building and Auditing Fair Algorithms: A Case Study in Candidate Screening. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21). Association for Computing Machinery, New York, NY, USA, 666-677. https://doi. org/10. 1145/3442188. 3445928
Jan Wouters and Michal Ovádek. 2021. Equality and Non-discrimination Law in the EU. In The European Union and Human Rights: Analysis, Cases, and Materials, Jan Wouters and Michal Ovádek (Eds.). Oxford University Press, 0. https://doi. org/10. 1093/oso/9780198814177. 003. 0007
Raphaële Xenidis and Linda Senden. 2019. EU Non-Discrimination Law in the Era of Artificial Intelligence: Mapping the Challenges of Algorithmic Discrimination. https://papers. ssrn. com/abstract=3529524
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. 2017. Fairness Constraints: Mechanisms for Fair Classification. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 54. arXiv, Fort Lauderdale, Florida, USA., 12. https: //doi. org/10. 48550/arXiv. 1507. 05259 arXiv:1507. 05259 [cs, stat].
Lu Zhang, Yongkai Wu, and Xintao Wu. 2017. Achieving Non-Discrimination in Data Release. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '17). Association for Computing Machinery, New York, NY, USA, 1335-1344. https://doi. org/10. 1145/3097983. 3098167
Han Zhao and Geoffrey J. Gordon. 2022. Inherent tradeoffs in learning fair representations. The Journal of Machine Learning Research 23, 1 (Jan. 2022), 57:2527-57:2552.