[en] MicroRNAs act via targeted suppression of messenger RNA translation in the DNA-RNA-protein axis. The dysregulation of microRNA(s) reflects the epigenetic changes affecting the cellular processes in multiple disorders. To understand the complex effect of dysregulated microRNAs linked to neurodegeneration, we performed a cross-sectional microRNA expression analysis in idiopathic Parkinson’s disease (n=367), progressive supranuclear palsy (n=35) and healthy controls (n=416) from the Luxembourg Parkinson’s study, followed by prediction modelling, enriched pathway analysis and target simulation of dysregulated miRNAs using probabilistic Boolean modelling. Forty-six microRNAs were identified to be dysregulated in Parkinson’s disease vs. controls and 16 in progressive supranuclear palsy vs. controls with four overlapping significantly dysregulated microRNAs between the comparisons. Predictive power of microRNA subsets (including up to 100 microRNAs) was modest for differentiating Parkinson’s disease or progressive supranuclear palsy from controls (maximal cross-validated area under the Receiver Operating Characteristic curve 0.76 and 0.86 respectively) and low for progressive supranuclear palsy vs. Parkinson’s disease (maximal cross-validated area under the Receiver Operating Characteristic curve 0.63). The enriched pathway analysis revealed Natural Killer cells pathway to be dysregulated in both, Parkinson’s disease and progressive supranuclear palsy vs. controls, indicating that the immune system might play an important role in both diseases. Probabilistic Boolean modelling of pathway dynamics affected by dysregulated microRNAs in Parkinson’s disease and progressive supranuclear palsy revealed partially overlapping dysregulation in activity of the transcription factor EB, endoplasmatic reticulum stress signalling, calcium signalling pathway, dopaminergic transcription, and peroxisome proliferator-activated receptor gamma coactivator-1α activity, though involving different mechanisms. These findings indicated a partially convergent (sub)cellular endpoint dysfunction at multiple levels in Parkinson’s disease and progressive supranuclear palsy, but with distinctive underlying molecular mechanisms.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB): Clinical & Experimental Neuroscience (Krüger Group) Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group) Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Neurologie Sciences de la santé humaine: Multidisciplinaire, généralités & autres Biochimie, biophysique & biologie moléculaire Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Pavelka, L.
Rauschenberger, A.
Hemedan, A.
Ostaszewski, M.
GLAAB, Enrico ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Krüger, R.
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Converging peripheral blood miRNA profiles in Parkinson's disease and progressive supranuclear palsy
Coughlin DG, Litvan I. Progressive supranuclear palsy: Advances in diagnosis and management. Parkinsonism Relat Disord. 2020;73: 105-116.
Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24(2):197-211.
VandeVrede L, Ljubenkov PA, Rojas JC, Welch AE, Boxer AL. Four-repeat tauopathies: Current management and future treatments. Neurotherapeutics 2020;17(4):1563-1581.
Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44(4):601-607.
Poulopoulos M, Levy OA, Alcalay RN. The neuropathology of genetic Parkinson’s disease. Mov Disord. 2012;27(7):831-842.
Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21(10):1300-1309.
Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res. 2018;373(1):21-37.
Guo P, Gong W, Li Y, et al. Pinpointing novel risk loci for Lewy body dementia and the shared genetic etiology with Alzheimer’s disease and Parkinson’s disease: A large-scale multi-trait association analysis. BMC Med. 2022;20(1):214.
Guerreiro R, Ross OA, Kun-Rodrigues C, et al. Investigating the genetic architecture of dementia with Lewy bodies: A two-stage genome-wide association study. Lancet Neurol. 2018;17(1): 64-74.
Huang Y, Mahley RW. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72:3-12.
Simón-Sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41(12):1308-1312.
Tsalenchuk M, Gentleman SM, Marzi SJ. Linking environmental risk factors with epigenetic mechanisms in Parkinson’s disease. Npj Park Dis. 2023;9(1):123.
Bartel DP. MicroRNAs. Cell 2004;116(2):281-297.
Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23(1):175-205.
Noor Eddin A, Hamsho K, Adi G, et al. Cerebrospinal fluid microRNAs as potential biomarkers in Alzheimer’s disease. Front Aging Neurosci. 2023;15:1210191.
Dobricic V, Schilling M, Farkas I, et al. Common signatures of differential microRNA expression in Parkinson’s and Alzheimer’s disease brains. Brain Commun. 2022;4(6):fcac274.
Grasso M, Piscopo P, Talarico G, et al. Plasma microRNA profiling distinguishes patients with frontotemporal dementia from healthy subjects. Neurobiol Aging. 2019;84:240.e1-240.e12.
Vallelunga A, Iannitti T, Capece S, et al. Serum miR-96-5P and miR-339-5P are potential biomarkers for multiple system atrophy and Parkinson’s disease. Front Aging Neurosci. 2021;13:632891.
Ravanidis S, Bougea A, Papagiannakis N, et al. Circulating brain-enriched microRNAs for detection and discrimination of idiopathic and genetic Parkinson’s disease. Mov Disord. 2020;35(3): 457-467.
Ravanidis S, Bougea A, Papagiannakis N, et al. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann Clin Transl Neurol. 2020;7(9):1594-1607.
Titze-de-Almeida R, Titze-de-Almeida SS, Ferreira GG, et al. microRNA signatures in prodromal REM sleep behavior disorder and early Parkinson’s disease as noninvasive biomarkers. Sleep Med. 2021;78:160-168.
Guévremont D, Roy J, Cutfield NJ, Williams JM. MicroRNAs in Parkinson’s disease: A systematic review and diagnostic accuracy meta-analysis. Sci Rep. 2023;13(1):16272.
Wang M, Li T, Gao R, Zhang Y, Han Y. Identifying the potential genes in alpha synuclein driving ferroptosis of Parkinson’s disease. Sci Rep. 2023;13(1):16893.
Saadh MJ, Faisal A, Adil M, et al. Parkinson’s disease and microRNAs: A duel between inhibition and stimulation of apoptosis in neuronal cells. Mol Neurobiol. 2024. doi: 10.1007/ s12035-024-04111-w. Epub ahead of print. PMID: 38520611.
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson’s disease and advanced therapeutic strategies. Gene 2024;892:147898.
Fehlmann T, Lehallier B, Schaum N, et al. Common diseases alter the physiological age-related blood microRNA profile. Nat Commun. 2020;11(1):5958.
Schulz J, Takousis P, Wohlers I, et al. Meta-analyses identify differentially expressed microRNAs in Parkinson’s disease. Ann Neurol. 2019;85(6):835-851.
Praticò D. The functional role of microRNAs in the pathogenesis of tauopathy. Cells 2020;9(10):2262.
Tatura R, Buchholz M, Dickson DW, et al. microRNA profiling: Increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). Neurogenetics 2016;17(3):165-171.
Nonaka W, Takata T, Iwama H, et al. A cerebrospinal fluid microRNA analysis: Progressive supranuclear palsy. Mol Med Rep. 2022;25(3):88.
Ramaswamy P, Christopher R, Kumar Pal P, Debnath M, Yadav R. Plasma microRNAs as a potential biomarker for identification of progressive supranuclear palsy. Diagnostics 2022;12(5):1204.
Starhof C, Hejl A, Heegaard NHH, et al. The biomarker potential of cell-free microRNA from cerebrospinal fluid in parkinsonian syndromes. Mov Disord. 2019;34(2):246-254.
Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson’s study: A comprehensive approach for stratification and early diagnosis. Front Aging Neurosci. 2018;10:326.
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417-425.
Fujita KA, Ostaszewski M, Matsuoka Y, et al. Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol. 2014;49(1):88-102.
Hemedan AA, Schneider R, Ostaszewski M. Applications of Boolean modeling to study the dynamics of a complex disease and therapeutics responses. Front Bioinforma. 2023;3:1189723.
Pachchek S, Landoulsi Z, Pavelka L, et al. Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson’s study. Npj Park Dis. 2023;9(1):156.
Pavelka L, Rawal R, Ghosh S, et al. Luxembourg Parkinson’s study —Comprehensive baseline analysis of Parkinson’s disease and atypical parkinsonism. Front Neurol. 2023;14:1330321.
Litvan I, Bhatia KP, Burn DJ, et al. SIC Task Force appraisal of clinical diagnostic criteria for parkinsonian disorders. Mov Disord. 2003;18(5):467-486.
Höglinger GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria: MDS clinical diagnostic criteria for PSP. Mov Disord. 2017;32(6):853-864.
Fehlmann T, Laufer T, Backes C, et al. Large-scale validation of miRNAs by disease association, evolutionary conservation and pathway activity. RNA Biol. 2019;16(1):93-103.
Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8): 3865-3877.
Leidinger P, Backes C, Meder B, Meese E, Keller A. The human miRNA repertoire of different blood compounds. BMC Genomics 2014;15(1):474.
Leidinger P, Backes C, Blatt M, et al. The blood-borne miRNA signature of lung cancer patients is independent of histology but influenced by metastases. Mol Cancer. 2014;13(1):202.
Kern F, Fehlmann T, Violich I, et al. Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson’s disease progression. Nat Aging. 2021;1(3):309-322.
Pavelka L, Rauschenberger A, Landoulsi Z, et al. Age at onset as stratifier in idiopathic Parkinson’s disease—Effect of ageing and polygenic risk score on clinical phenotypes. Npj Park Dis. 2022;8(1):102.
Landoulsi Z, Pachchek S, Bobbili DR, et al. Genetic landscape of Parkinson’s disease and related diseases in Luxembourg. Front Aging Neurosci. 2023;15:1282174.
Yeganeh PN, Teo YY, Karagkouni D, et al. PanomiR: A systems biology framework for analysis of multi-pathway targeting by miRNAs. Syst Biol (Stevenage). 2022;24(6):bbad418.
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.
Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat. 2000;25(1):60.
Hemedan AA, Niarakis A, Schneider R, Ostaszewski M. Boolean modelling as a logic-based dynamic approach in systems medicine. Comput Struct Biotechnol J. 2022;20:3161-3172.
Montagud A, Béal J, Tobalina L, et al. Patient-specific Boolean models of signalling networks guide personalised treatments. eLife. 2022;11:e72626.
Zheng Y, Dong L, Liu N, Luo X, He Z. Mir-141-3p regulates apoptosis and mitochondrial membrane potential via targeting sirtuin1 in a 1-methyl-4-phenylpyridinium in vitro model of Parkinson’s disease. BioMed Res Int. 2020;2020:1-14.
Soto M, Iranzo A, Lahoz S, et al. Serum MicroRNAs predict isolated rapid eye movement sleep behavior disorder and Lewy body diseases. Mov Disord. 2022;37(10):2086-2098.
Soto M, Fernández M, Bravo P, et al. Differential serum microRNAs in premotor LRRK2 G2019S carriers from Parkinson’s disease. Npj Park Dis. 2023;9(1):15.
Duan X, Zheng Q, Liang L, Zhou L. Serum exosomal miRNA-125b and miRNA-451a are potential diagnostic biomarker for Alzheimer’s diseases. Degener Neurol Neuromuscul Dis. 2024;14:21-31.
Brennan S, Keon M, Liu B, Su Z, Saksena NK. Panoramic visualization of circulating MicroRNAs across neurodegenerative diseases in humans. Mol Neurobiol. 2019;56(11):7380-7407.
Takousis P, Sadlon A, Schulz J, et al. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimers Dement. 2019;15(11):1468-1477.
Khoo SK, Petillo D, Kang UJ, et al. Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Park Dis. 2012; 2(4):321-331.
Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLOS ONE. 2015;10(5):e0126423.
Fuzzati-Armentero MT, Cerri S, Blandini F. Peripheral-central neuroimmune crosstalk in Parkinson’s disease: What do patients and animal models tell us? Front Neurol. 2019;10:232.
Earls RH, Lee JK. The role of natural killer cells in Parkinson’s disease. Exp Mol Med. 2020;52(9):1517-1525.
Holbrook J, Patel B, Camacho M, Kahanawita L, Greenland J, Williams-Gray CH. Natural killer cells have an activated profile in early Parkinson’s disease. J Neuroimmunol. 2023;382:578154.
Qi C, Liu Q. Natural killer cells in aging and age-related diseases. Neurobiol Dis. 2023;183:106156.
Earls RH, Menees KB, Chung J, et al. NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc Natl Acad Sci. 2020; 117(3):1762-1771.
Rydbirk R, Elfving B, Folke J, et al. Increased prefrontal cortex interleukin-2 protein levels and shift in the peripheral T cell population in progressive supranuclear palsy patients. Sci Rep. 2019;9(1):7781.
Capelle CM, Ciré S, Hedin F, et al. Early-to-mid stage idiopathic Parkinson’s disease shows enhanced cytotoxicity and differentiation in CD8 T-cells in females. Nat Commun. 2023;14(1):7461.
Tan A, Prasad R, Lee C, hoon JE. Past, present, and future perspectives of transcription factor EB (TFEB): Mechanisms of regulation and association with disease. Cell Death Differ. 2022;29(8):1433-1449.
Mubariz F, Saadin A, Lingenfelter N, et al. Deregulation of mTORC1-TFEB axis in human iPSC model of GBA1-associated Parkinson’s disease. Front Neurosci. 2023;17:1152503.
Zhu Z, Yang C, Iyaswamy A, et al. Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int J Mol Sci. 2019;20(3):728.
Grochowska MM, Carreras Mascaro A, Boumeester V, et al. LRP10 interacts with SORL1 in the intracellular vesicle trafficking pathway in non-neuronal brain cells and localises to Lewy bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol (Berl). 2021;142(1):117-137.
Collier JJ, Guissart C, Oláhová M, et al. Developmental consequences of defective ATG7-mediated autophagy in humans. N Engl J Med. 2021;384(25):2406-2417.
Lu J, Wu M, Yue Z. Autophagy and Parkinson’s disease. In: Le W, ed. Autophagy: Biology and diseases. Vol 1207. Advances in Experimental Medicine and Biology. Springer Singapore; 2020:21-51.
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E. SIRT1 pathway in Parkinson’s disease: A faraway snapshot but so close. Inflammopharmacology 2023;31(1):37-56.
Jang Y, Thuraisamy T, Redding-Ochoa J, et al. Mass spectrometry-based proteomics analysis of human globus pallidus from progressive supranuclear palsy patients discovers multiple disease pathways. Clin Transl Med. 2022;12(11):e1076.
Li H, Cai Z. SIRT3 regulates mitochondrial biogenesis in aging-related diseases. J Biomed Res. 2022;37(2):77-88.
Calì T, Ottolini D, Brini M. Calcium signaling in Parkinson’s disease. Cell Tissue Res. 2014;357(2):439-454.
Rivero-Ríos P, Gómez-Suaga P, Fdez E, Hilfiker S. Upstream deregulation of calcium signaling in Parkinson’s disease. Front Mol Neurosci. 2014;7:53.
Salaramoli S, Joshaghani H, Hashemy SI. Selenium effects on oxidative stress-induced calcium signaling pathways in Parkinson’s disease. Indian J Clin Biochem. 2022;37(3):257-266.
Knörle R. Neuromelanin in Parkinson’s disease: From Fenton reaction to calcium signaling. Neurotox Res. 2018;33(2):515-522.
Zaichick SV, McGrath KM, Caraveo G. The role of Ca2+ signaling in Parkinson’s disease. Dis Model Mech. 2017;10(5):519-535.
Wu J, Li J, Feng B, et al. Activation of AMPK-PGC-1α pathway ameliorates peritoneal dialysis related peritoneal fibrosis in mice by enhancing mitochondrial biogenesis. Ren Fail. 2022;44(1):1546-1558.
Pirooznia SK, Yuan C, Khan MR, et al. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. Mol Neurodegener. 2020;15(1):17.
Rutledge J, Lehallier B, Zarifkar P, et al. Comprehensive proteomics of CSF, plasma, and urine identify DDC and other biomarkers of early Parkinson’s disease. Acta Neuropathol (Berl). 2024;147(1):52.