Carbon capture and storage, multistage optimal control, optimal timing
Résumé :
[en] Carbon capture and storage (CCS) has a critical role to play in the world’s quest for
net zero, by mitigating greenhouse gas (GHG) emissions from major pollution sources.
However, the deployment of CCS technologies involves significant costs. This paper
studies the social cost of CCS initiatives and GHG damage, adopting the perspective of
a central planner to determine the optimal deployment strategy for various stakeholders.
The study yields two principal findings. First, due to the diverse cost structures
among stakeholders, it is not socially optimal for all to initiate CCS projects simultaneously.
Instead, the player with the cost advantage should be the one to initiate
a CCS project first. Second, under certain circumstances it may be socially advantageous
for the player facing higher costs to refrain from engaging in CCS altogether.
We derive the conditions conducive to both scenarios. The latter finding provides a
clear guideline for policymakers: reduce the expenses of the high-cost player to foster
global GHG emission reductions, contingent upon the objectives of the supranational
institution.
Disciplines :
Stratégie & innovation
Auteur, co-auteur :
Chen, Yiwen
PAULUS, Nora ; University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Finance (DF)
Wan, Xi
ZOU, Benteng ; University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Economics and Management (DEM)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Optimal Timing of Carbon Capture and Storage Policies --- a Social Planner’s View
Date de publication/diffusion :
2024
Titre du périodique :
Energy Economics
ISSN :
0140-9883
eISSN :
1873-6181
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Sustainable Development
Objectif de développement durable (ODD) :
13. Mesures relatives à la lutte contre les changements climatiques
Amigues, J.-P., Lafforgue, G., Moreaux, M., Optimal timing of carbon capture policies under learning-by-doing. J. Environ. Econ. Manage. 78 (2016), 20–37.
Australian Government Department of Industry, Science and Resources, J.-P., Low Emissions Technology Statement 2021. 2021.
Ayong Le Kama, A., Fodha, M., Lafforgue, G., Optimal carbon capture and storage policies. Environ. Model. Assess. 18 (2013), 417–426.
Bains, P., Psarras, P., Wilcox, J., CO2 capture from the industry sector. Prog. Energy Combust. Sci. 0360-1285, 63, 2017, 146–172.
Benchekroun, H., Chaudhuri, A.R., Transboundary pollution and clean technologies. Resour. Energy Econ. 36:2 (2014), 601–619.
Benchekroun, H., van Long, N., Efficiency inducing taxation for polluting oligopolists. J. Public Econ., 70(2), 1998, 18.
Bertinelli, L., Camacho, C., Zou, B., Carbon capture and storage and transboundary pollution: A differential game approach. European J. Oper. Res. 237:2 (2014), 721–728.
Bertinelli, L., Marchiori, L., Tabakovic, A., Zou, B., The impact of unilateral commitment on transboundary pollution. Environ. Model. Assess. 23 (2018), 25–37.
Boucekkine, R., Prieur, F., Ruan, W., Zou, B., Uncertainty-driven symmetry-breaking and stochastic stability in a generic differential game of lobbying. Econom. Theory, 2022, 1–45.
Boucekkine, R., Ruan, W., Zou, B., The irreversible pollution game. J. Environ. Econ. Manage., 120, 2023, 102841.
Budinis, S., Krevor, S., Dowell, N.M., Brandon, N., Hawkes, A., An assessment of CCS costs, barriers and potential. Energy Strategy Rev. 22 (2018), 61–81.
Chakravorty, U., Moreaux, M., Tidball, M., Ordering the extraction of polluting nonrenewable resources. Am. Econ. Rev. 98:3 (2008), 1128–1144.
Congressional Budget Office, 2023. Carbon Capture and Storage in the United States. Technical Report.
Dockner, E.J., Jorgensen, S., Van Long, N., Sorger, G., Differential Games in Economics and Management Science. 2000, Cambridge University Press.
Dockner, E.J., Van Long, N., International pollution control: cooperative versus noncooperative strategies. J. Environ. Econ. Manage. 25:1 (1993), 13–29.
Durmaz, T., The economics of CCS: Why have CCS technologies not had an international breakthrough?. Renew. Sustain. Energy Rev. 95 (2018), 328–340.
Esen, H., Inalli, M., Esen, M., Techno-economic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Convers. Manage. 0196-8904, 47(9), 2006, 1281–1297.
Esen, H., Inalli, M., Esen, M., A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Build. Environ. 0360-1323, 42(5), 2007, 1955–1965.
Esen, M., Yuksel, T., Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build. 0378-7788, 65, 2013, 340–351.
Fan, J.-L., Li, Z., Ding, Z., Li, K., Zhang, X., Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models. Energy Econ., 126, 2023, 106972.
Forster, B.A., Optimal pollution control with a nonconstant exponential rate of decay. J. Environ. Econ. Manage. 2:1 (1975), 1–6.
Global CCS Institute, 2021. Global Status of CCS 2021. Technical Report.
Global CCS Institute, 2023a. CCS in Europe Regional Overview 2023. Technical Report.
Global CCS Institute, 2023b. Global Status of CCS. Technical Report.
Goulder, L.H., Mathai, K., Optimal CO2 abatement in the presence of induced technological change. Technological Change and the Environment, 2010, Routledge, 210–250.
Hammond, G.P., Akwe, S.O., Williams, S., Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage. Energy 36:2 (2011), 975–984.
Hoel, M., Karp, L., Taxes and quotas for a stock pollutant with multiplicative uncertainty. J. Public Econ. 82:1 (2001), 91–114.
Hoel, M., Karp, L., Taxes versus quotas for a stock pollutant. Resour. Energy Econ. 24:4 (2002), 367–384.
Holz, F., Scherwath, T., del Granado, P.C., Skar, C., Olmos, L., Ploussard, Q., Ramos, A., Herbst, A., A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector. Energy Econ., 104, 2021, 105631.
IEA, F., Energy Technology Perspectives 2020: Technical Report., 2020, International Energy Agency (IEA).
IPCC, F., Climate Change 2022 - Mitigation of Climate Change. 2022, Intergovernmental Panel on Climate Change, Geneva, Switzerland.
IRENA, Reaching Zero with Renewables: Eliminating CO2 Emissions from Industry and Transport in Line with the 1.5oC Climate Goal. International Renewable Energy Agency, Masdar City, United Arab Emirates.
Karp, L., Zhang, J., Taxes versus quantities for a stock pollutant with endogenous abatement costs and asymmetric information. Econom. Theory 49:2 (2012), 371–409.
Keeler, E., Spence, M., Zeckhauser, R., The optimal control of pollution. J. Econom. Theory 4:1 (1972), 19–34.
Koelbl, B.S., van den Broek, M.A., van Ruijven, B.J., Faaij, A.P.C., van Vuuren, D.P., Uncertainty in the deployment of carbon capture and storage (CCS): A sensitivity analysis to techno-economic parameter uncertainty. Int. J. Greenh. Gas Control 27 (2014), 81–102.
Lafforgue, G., Magné, B., Moreaux, M., Energy substitutions, climate change and carbon sinks. Ecol. Econom. 67:4 (2008), 589–597.
Leeson, D., Mac Dowell, N., Shah, N., Petit, C., Fennell, P.S., A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int. J. Greenh. Gas Control 61 (2017), 71–84.
Lohwasser, R., Madlener, R., Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in europe. Energy Econ. 34:3 (2012), 850–863.
Massol, O., Tchung-Ming, S., Banal-Estañol, A., Joining the CCS club! The economics of CO2 pipeline projects. European J. Oper. Res. 247:1 (2015), 259–275.
Moreaux, M., Amigues, J.-P., van der Meijden, G., Withagen, C., Carbon capture: Storage vs. utilization. J. Environ. Econ. Manage., 2024, 102976.
Moreaux, M., Withagen, C., Optimal abatement of carbon emission flows. J. Environ. Econ. Manage. 74 (2015), 55–70.
Nordhaus, W.D., A review of the stern review on the economics of climate change. J. Econ. Lit. 45:3 (2007), 686–702.
Otsuki, T., Shibata, Y., Matsuo, Y., Obane, H., Morimoto, S., Role of carbon dioxide capture and storage in energy systems for net-zero emissions in Japan. Int. J. Greenh. Gas Control, 132, 2024, 104065.
Reilly, J.M., Richards, K.R., Climate change damage and the trace gas index issue. Environ. Resour. Econ. 3 (1993), 41–61.
Renner, M., Carbon prices and CCS investment: a comparative study between the European Union and China. Energy Policy 75 (2014), 327–340.
Schlissel, D., Juhn, A., 2023. Blue Hydrogen: Not Clean, Not Low Carbon, Not a Solution. Technical Report.
SINOPEC, D., Sinopec Completes China's First Megaton Scale Carbon Capture Project | China Sinopec. 2022 http://www.sinopecgroup.com/group/en/Sinopecnews/20220130/news_20220130_467995626111.shtml.
Stokey, N.L., Are there limits to growth?. Internat. Econom. Rev., 1998, 1–31.
Tahvonen, O., Withagen, C., Optimality of irreversible pollution accumulation. J. Econom. Dynam. Control 20:9–10 (1996), 1775–1795.
Tola, V., Pettinau, A., Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies. Appl. Energy 113 (2014), 1461–1474.
U.S. Department of Energy, 2022. The Carbon Capture, Transport, and Storage Supply Chain Review: Deep Dive Assessment. Technical Report.
U.S. Department of Energy, V., Investing in America agenda. 2023 https://www.energy.gov/articles/biden-harris-administration-announces-12-billion-nations-first-direct-air-capture.
Van den Broek, M., Ramírez, A., Groenenberg, H., Neele, F., Viebahn, P., Turkenburg, W., Faaij, A., Feasibility of storing CO2 in the Utsira formation as part of a long term Dutch CCS strategy: An evaluation based on a GIS/MARKAL toolbox. Int. J. Greenh. Gas Control 4:2 (2010), 351–366.
Van der Spek, M., Roussanaly, S., Rubin, E.S., Best practices and recent advances in CCS cost engineering and economic analysis. Int. J. Greenh. Gas Control 83 (2019), 91–104.
Van der Wijk, P.C., Brouwer, A.S., Van den Broek, M., Slot, T., Stienstra, G., Van der Veen, W., Faaij, A.P., Benefits of coal-fired power generation with flexible CCS in a future northwest European power system with large scale wind power. Int. J. Greenh. Gas Control 28 (2014), 216–233.
Walsh, D., O'Sullivan, K., Lee, W., Devine, M., When to invest in carbon capture and storage technology: A mathematical model. Energy Econ. 42 (2014), 219–225.
Yang, L., Xu, M., Yang, Y., Fan, J., Zhang, X., Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China. Appl. Energy, 255, 2019, 113828.
Yao, X., Fan, Y., Zhu, L., Zhang, X., Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options. Energy Econ., 86, 2020, 104643.
Zhang, K., Lau, H.C., Chen, Z., The contribution of carbon capture and storage to Canada's net-zero plan. J. Clean. Prod., 404, 2023, 136901.