[en] Abstract
Background
Persistent, mobile and toxic (PMT), or very persistent and very mobile (vPvM) substances are a wide class of chemicals that are recalcitrant to degradation, easily transported, and potentially harmful to humans and the environment. Due to their persistence and mobility, these substances are often widespread in the environment once emitted, particularly in water resources, causing increased challenges during water treatment processes. Some PMT/vPvM substances such as GenX and perfluorobutane sulfonic acid have been identified as substances of very high concern (SVHCs) under the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation. With hundreds to thousands of potential PMT/vPvM substances yet to be assessed and managed, effective and efficient approaches that avoid a case-by-case assessment and prevent regrettable substitution are necessary to achieve the European Union's zero-pollution goal for a non-toxic environment by 2050.
Main
Substance grouping has helped global regulation of some highly hazardous chemicals, e.g., through the Montreal Protocol and the Stockholm Convention. This article explores the potential of grouping strategies for identifying, assessing and managing PMT/vPvM substances. The aim is to facilitate early identification of lesser-known or new substances that potentially meet PMT/vPvM criteria, prompt additional testing, avoid regrettable use or substitution, and integrate into existing risk management strategies. Thus, this article provides an overview of PMT/vPvM substances and reviews the definition of PMT/vPvM criteria and various lists of PMT/vPvM substances available. It covers the current definition of groups, compares the use of substance grouping for hazard assessment and regulation, and discusses the advantages and disadvantages of grouping substances for regulation. The article then explores strategies for grouping PMT/vPvM substances, including read-across, structural similarity and commonly retained moieties, as well as the potential application of these strategies using cheminformatics to predict P, M and T properties for selected examples.
Conclusions
Effective substance grouping can accelerate the assessment and management of PMT/vPvM substances, especially for substances that lack information. Advances to read-across methods and cheminformatics tools are needed to support efficient and effective chemical management, preventing broad entry of hazardous chemicals into the global market and favouring safer and more sustainable alternatives.
Disciplines :
Chimie
Auteur, co-auteur :
CHIRSIR, Parviel ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
PALM, Emma Helena ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
European Union’s Horizon 2020 research and innovation programme Natural Sciences and Engineering Research Council of Canada Fonds National de la Recherche Luxembourg
R. Fuller P.J. Landrigan K. Balakrishnan et al. Pollution and health: a progress update Lancet Planet Health 2022 6 e535 e547 10.1016/S2542-5196(22)00090-0
United Nations (2015) Resolution adopted by the General Assembly on 25 September 2015. Transforming our world: the 2030 Agenda for Sustainable Development. https://undocs.org/Home/Mobile?FinalSymbol=A%2FRES%2F70%2F1&Language=E&DeviceType=Desktop&LangRequested=False
Z. Wang G.W. Walker D.C.G. Muir K. Nagatani-Yoshida Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories Environ Sci Technol 2020 54 2575 2584 1:CAS:528:DC%2BB3cXhsFaitL0%3D 10.1021/acs.est.9b06379
S. Kim J. Chen T. Cheng et al. PubChem 2023 update Nucleic Acids Res 2023 51 D1373 D1380 10.1093/nar/gkac956
PubChem (2023) PubChem-Explore Chemistry. https://pubchem.ncbi.nlm.nih.gov/. Accessed 4 Dec 2023
CAS CAS Registry|CAS. https://www.cas.org/cas-data/cas-registry. Accessed 30 Jan 2024
Resnik DB, Portier CJ (2022) Environment, Ethics, and Human Health - The Hastings Center. https://www.thehastingscenter.org/briefingbook/environmental-health/. Accessed 6 Nov 2023
L. Persson B.M. Carney Almroth C.D. Collins et al. Outside the safe operating space of the planetary boundary for novel entities Environ Sci Technol 2022 56 1510 1521 1:CAS:528:DC%2BB38XhtFegsro%3D 10.1021/acs.est.1c04158
Eurostat (2023) Chemicals production and consumption statistics—statistics Explained. https://ec.europa.eu/eurostat/databrowser/view/sdg_12_10/default/bar?lang=en. Accessed 4 Oct 2023
SCHEER (Scientific Committee on Health, Environmental and Emerging Risks) (2018) Statement on emerging health and environmental issues. https://health.ec.europa.eu/system/files/2019-02/scheer_s_002_0.pdf
European Commission (2022) Commission Delegated Regulation (EU) 2023/707 of 19 December 2022 amending Regulation (EC) No. 1272/2008 as regards hazard classes and criteria for the classification, labelling and packaging of substances and mixtures. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32023R0707
S.E. Hale H.P.H. Arp I. Schliebner M. Neumann Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH Environ Sci Eur 2020 32 155 1:CAS:528:DC%2BB3MXhsVars74%3D 10.1186/s12302-020-00440-4
M. Matthies K. Solomon M. Vighi et al. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs) Environ Sci Processes Impacts 2016 18 1114 1128 1:CAS:528:DC%2BC28XhtFOisbrO 10.1039/C6EM00311G
P. Shrestha T. Junker K. Fenner et al. Simulation studies to explore biodegradation in water-sediment systems: from OECD 308 to OECD 309 Environ Sci Technol 2016 50 6856 6864 1:CAS:528:DC%2BC28XhtVaksL7I 10.1021/acs.est.6b01095
J. Van Dijk R. Figuière S.C. Dekker et al. Managing PMT/vPvM substances in consumer products through the concepts of essential-use and functional substitution: a case-study for cosmetics Environ Sci Processes Impacts 2023 25 1067 1081 10.1039/D3EM00025G
V. Albergamo B.I. Escher E.L. Schymanski et al. Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening Environ Sci Water Res Technol 2020 6 103 116 1:CAS:528:DC%2BC1MXhvFymsbfP 10.1039/C9EW00741E
L. Camacho K.P. Kelly F.A. Beland G. Gamboa da Costa Gene expression of biomarkers of nephrotoxicity in F344 rats co-exposed to melamine and cyanuric acid for seven days Toxicol Lett 2011 206 166 171 1:CAS:528:DC%2BC3MXhtV2itLnL 10.1016/j.toxlet.2011.07.009
O.A. Habotta A. Abdeen A.B. Roomi et al. Nootkatone mitigated melamine-evoked hepatotoxicity by featuring oxidative stress and inflammation interconnected mechanisms: in vivo and in silico approaches Toxics 2023 11 784 1:CAS:528:DC%2BB3sXitVyqsrfL 10.3390/toxics11090784
A.K. Hau T.H. Kwan P.K. Li Melamine toxicity and the kidney J Am Soc Nephrol 2009 20 245 250 1:CAS:528:DC%2BD1MXjtFCrt7w%3D 10.1681/ASN.2008101065
Arp HPH, Hale SE, Schliebner I, Neumann M (2022) S36|UBAPMT|Prioritised PMT/vPvM substances in the REACH registration database_all versions. 10.5281/ZENODO.2653212
B.M. Aumeier A. Georgi N. Saeidi G. Sigmund Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? Sci Total Environ 2023 880 1:CAS:528:DC%2BB3sXns1Wlu7k%3D 10.1016/j.scitotenv.2023.163343
H. Rüdel W. Körner T. Letzel et al. Persistent, mobile and toxic substances in the environment: a spotlight on current research and regulatory activities Environ Sci Eur 2020 32 5 1:CAS:528:DC%2BB3cXkvFyns7k%3D 10.1186/s12302-019-0286-x
L.H. Lütjens S. Pawlowski M. Silvani et al. Melamine in the environment: a critical review of available information Environ Sci Eur 2023 35 2 1:CAS:528:DC%2BB3sXovVSitA%3D%3D 10.1186/s12302-022-00707-y
H.P.H. Arp S.E. Hale Assessing the persistence and mobility of organic substances to protect freshwater resources ACS Environ Au 2022 2 482 509 1:CAS:528:DC%2BB38XhvF2hsbjF 10.1021/acsenvironau.2c00024
J.A. Tickner J.N. Schifano A. Blake et al. Advancing safer alternatives through functional substitution Environ Sci Technol 2015 49 742 749 1:CAS:528:DC%2BC2cXitFaqsbfO 10.1021/es503328m
T. Žalmanová K. Hošková J. Nevoral et al. Bisphenol S instead of bisphenol A: a story of reproductive disruption by regretable substitution—a review Czech J Anim Sci 2016 61 433 449 10.17221/81/2015-CJAS
IUPAC (2019) IUPAC Compendium of Chemical Terminology, “chemical substance.” In: 3rd edn International Union of Pure and Applied Chemistry; 2006, https://doi.org/10.1351/goldbook.C01039
PubChem (2024) Explore PubChem Documentation. https://pubchem.ncbi.nlm.nih.gov/docs/. Accessed 23 Jan 2024
IUPAC (2019) IUPAC Compendium of Chemical Terminology, “mixture.” In: 3rd edn. International Union of Pure and Applied Chemistry; 2006, https://doi.org/10.1351/goldbook.M03949
S.D. Dimitrov D.G. Georgieva T.S. Pavlov et al. UVCB substances: methodology for structural description and application to fate and hazard assessment Environ Toxicol Chem 2015 34 2450 2462 1:CAS:528:DC%2BC2MXhs1Wqu7%2FO 10.1002/etc.3100
European Commission (2006) EUR-Lex-02006R1907-20140410-EN-EUR-Lex Consolidated text: Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410, Accessed 20 Dec 2023
A. Åberg M. MacLeod K. Wiberg Physical–chemical property data for dibenzo-p-dioxin (DD), dibenzofuran (DF), and chlorinated DD/Fs: a critical review and recommended values J Phys Chem Ref Data 2008 37 1997 2008 1:CAS:528:DC%2BD1cXhtlyhs7fE 10.1063/1.3005673
European Commission (2017) Commission Regulation (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin‐like PCBs and non‐dioxin‐like PCBs in certain foodstuffs and repealing Regulation (EU) No. 589/2014. Official Journal of the European Union L 92/9, https://eur-lex.europa.eu/eli/reg/2017/644/oj
A. Mukherjee B. Debnath S.K. Ghosh A review on technologies of removal of dioxins and furans from incinerator flue gas Proc Environ Sci 2016 35 528 540 1:CAS:528:DC%2BC28XhtlOgtbnI 10.1016/j.proenv.2016.07.037
O. Garmash M.H. Hermanson E. Isaksson et al. Deposition history of polychlorinated biphenyls to the Lomonosovfonna Glacier, Svalbard: a 209 congener analysis Environ Sci Technol 2013 47 12064 12072 1:CAS:528:DC%2BC3sXhsFarsrnE 10.1021/es402430t
K. Mansouri C.M. Grulke R.S. Judson A.J. Williams OPERA models for predicting physicochemical properties and environmental fate endpoints J Cheminform 2018 10 10 1:CAS:528:DC%2BC1MXmtFWiurY%3D 10.1186/s13321-018-0263-1
W. Meylan P.H. Howard R.S. Boethling Molecular topology/fragment contribution method for predicting soil sorption coefficients Environ Sci Technol 1992 26 1560 1567 1:CAS:528:DyaK38Xks12jsb4%3D 10.1021/es00032a011
Bolton E, Schymanski E, Kondic T et al (2023) PubChemLite for Exposomics (V. 1.27.0). 10.5281/zenodo.10126889
P. Peets W.-C. Wang M. MacLeod et al. MS2Tox machine learning tool for predicting the ecotoxicity of unidentified chemicals in water by Nontarget LC-HRMS Environ Sci Technol 2022 56 15508 15517 1:CAS:528:DC%2BB38Xis1ygsbnI 10.1021/acs.est.2c02536
R Core Team (2023) A language and environment for statistical computing. R Foundation for Statistical Computing. https://cran.r-project.org/bin/windows/base/old/4.3.1/
H. Wickham M. Averick J. Bryan et al. Welcome to the Tidyverse JOSS 2019 4 1686 10.21105/joss.01686
Wickham H, Chang W, Wickham MH (2016) Package ‘ggplot2.’ Create elegant data visualisations using the grammar of graphics Version 2:1–189. https://ggplot2.tidyverse.org/reference/ggplot2-package.html
Thomas Lin Pedersen (2024) ggplot2 3.5.0. https://github.com/tidyverse/ggplot2/releases/tag/v3.5.0
Schymanski EL (2020) RChemMass: various cheminformatic, curation and mass spectrometry functions. https://github.com/schymane/RChemMass
Arp HPH, Hale SE, Schliebner I, Neumann M (2023) Prioritised PMT/vPvM substances in the REACH registration database|Umweltbundesamt. https://www.umweltbundesamt.de/publikationen/prioritised-pmtvpvm-substances-in-the-reach. Accessed 9 Oct 2023
Neumann M, Schliebner I (2019) Protecting the sources of our drinking water: The criteria for identifying persistent, mobile and toxic (PMT) substances and very persistent and very mobile (vPvM) substances under EU Regulation REACH (EC) No. 1907/2006. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-11-29_texte_127-2019_protecting-sources-drinking-water-pmt.pdf
Holmberg R, Wedebye EB, Nikolov NG, Tyle H (2021) How many potential vPvM/PMT substances have been registered under REACH?-vPvM/PMT-screening by using the Danish (Q) SAR database. https://backend.orbit.dtu.dk/ws/portalfiles/portal/240040384/111514_909384_DTU_Rapport_vPvM_PMT_CB_7kor_links.pdf
Kiefer K, Du L, Singer H, Hollender J (2021) S82|EAWAGPMT|PMT Suspect List from Eawag. 10.5281/ZENODO.5500131
Neuwald I, Muschket M, Zahn D et al (2021) S84|UFZHSFPMT|PMT Suspect List from UFZ and HSF. 10.5281/ZENODO.5535287
Schymanski E, Wang Z, Wolf R, Arp HP (2022) S90|ZEROPMBOX1|ZeroPM Box 1 Substances. 10.5281/ZENODO.5854251
Schymanski E (2023) S111|PMTPFAS|Fluorine-containing Compounds in PMT Suspect Lists. 10.5281/ZENODO.8417075
H. Mohammed Taha R. Aalizadeh N. Alygizakis et al. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry Environ Sci Eur 2022 34 104 1:CAS:528:DC%2BB38XislWhs7fL 10.1186/s12302-022-00680-6
NORMAN Network (2024) NORMAN Suspect List Exchange. https://www.norman-network.com/nds/SLE/. Accessed 30 Jan 2024
Arp HPH, Hale SE (2020) S36|UBAPMT|Potential Persistent, Mobile and Toxic (PMT) substances_V.0.2. 10.5281/ZENODO.3637611
UBA (2019) REACH: Improvement of guidance and methods for the identification and assessment of PMT/vPvM substances|Umweltbundesamt. https://www.umweltbundesamt.de/en/publikationen/reach-improvement-of-guidance-methods-for-the. Accessed 4 Oct 2023
Arp HPH, Hale SE (2020) S36|UBAPMT|Potential Persistent, Mobile and Toxic (PMT) substances V.0.3. 10.5281/ZENODO.3637611
UBA (2023) Prioritised PMT/vPvM substances in the REACH registration database. https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/21_2023_texte_pmt_vpvm_substances_reach_v23032023.pdf
K. Kiefer L. Du H. Singer J. Hollender Identification of LC-HRMS nontarget signals in groundwater after source related prioritization Water Res 2021 196 1:CAS:528:DC%2BB3MXnt1yjtr4%3D 10.1016/j.watres.2021.116994
Fischer S (2023) S17|KEMIMARKET|KEMI Market List. 10.5281/ZENODO.2628786
I. Neuwald M. Muschket D. Zahn et al. Filling the knowledge gap: a suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems Water Res 2021 204 1:CAS:528:DC%2BB3MXitVKht7vO 10.1016/j.watres.2021.117645
Neuwald I, Muschket M, Zahn D et al (2021) A suspect screening list of 1310 persistent and mobile (PM) candidates. 10.5281/zenodo.5503380
A. Blum M. Behl L.S. Birnbaum et al. Organophosphate ester flame retardants: are they a regrettable substitution for polybrominated diphenyl ethers? Environ Sci Technol Lett 2019 6 638 649 1:CAS:528:DC%2BC1MXhvFymurnF 10.1021/acs.estlett.9b00582
UNEP (2023) About Montreal Protocol. https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol. Accessed 7 Oct 2023
United Nations (1989) Montreal Protocol on Substances that Deplete the Ozone Layer (with annex). Concluded at Montreal on 16 September 1987. https://treaties.un.org/doc/publication/unts/volume%201522/volume-1522-i-26369-english.pdf. 1522: 1–26369
Stockholm Convention (2023) Overview. https://www.pops.int/TheConvention/Overview/tabid/3351/Default.aspx. Accessed 7 Oct 2023
European Commission (2022) Consolidated text: Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02009R1107-20221121
European Commission (2022) Consolidated text: Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products (Text with EEA relevance)Text with EEA relevance. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02012R0528-20220415
European Commission (2021) Commission Regulation (EU) 2021/979 of 17 June 2021 amending Annexes VII to XI to Regulation (EC) No. 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). https://eur-lex.europa.eu/eli/reg/2021/979/oj. Accessed 16 Oct 2023
M. Gonzalez K.N. Taddonio N.J. Sherman The Montreal Protocol: how today’s successes offer a pathway to the future J Environ Stud Sci 2015 5 122 129 10.1007/s13412-014-0208-6
A.R. Ravishankara J.S. Daniel R.W. Portmann Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century Science 2009 326 123 125 1:CAS:528:DC%2BD1MXhtF2hs7jF 10.1126/science.1176985
S.A. Umar S.A. Tasduq Ozone layer depletion and emerging public health concerns—an update on epidemiological perspective of the ambivalent effects of ultraviolet radiation exposure Front Oncol 2022 12 1:CAS:528:DC%2BB3sXhtlKjur7O 10.3389/fonc.2022.866733
EEA (2023) EU and global consumption of controlled ozone-depleting substances—European Environment Agency. In: European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/consumption-of-controlled-ozone-depleting-5/. Accessed 7 Oct 2023
Nunez C (2023) Ozone layer facts and information. https://www.nationalgeographic.com/environment/article/ozone-depletion. Accessed 9 Jan 2024
ECOLEX (2004) Regulation (EC) No. 850/2004 of the European Parliament and of the Council on persistent organic pollutants and amending Directive 79/117/EEC. https://www.ecolex.org/details/legislation/regulation-ec-no-8502004-of-the-european-parliament-and-of-the-council-on-persistent-organic-pollutants-and-amending-directive-79117eec-lex-faoc087038/. Accessed 9 Oct 2023
Wheeler AF (2017) Study on the cumulative health and environmental benefits of chemical legislation: final report. https://data.europa.eu/doi/10.2779/070159
Stockholm Convention (2024) Listing of POPs in the Stockholm Convention. https://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx. Accessed 7 Oct 2023
United Nations The 12 Initial POPs. https://www.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx, Accessed 30 Jan 2024
EEA (2023) National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention). In: European Environmental Agency. https://www.eea.europa.eu/en/datahub/datahubitem-view/5be6cebc-ed2b-4496-be59-93736fc4ad78?activeAccordion=1086857. Accessed 7 Oct 2023
Aurich D (2024) Environmental cheminformatics/chemicalstripes. GitLab. https://gitlab.lcsb.uni.lu/eci/chemicalstripes, Accessed 31 Jan 2024
A. Maertens E. Golden T. Hartung Avoiding regrettable substitutions: green toxicology for sustainable chemistry ACS Sustain Chem Eng 2021 9 7749 7758 1:CAS:528:DC%2BB3MXhtF2hsrbK 10.1021/acssuschemeng.0c09435
A.S. Young J.G. Allen U.-J. Kim et al. Phthalate and organophosphate plasticizers in nail polish: evaluation of labels and ingredients Environ Sci Technol 2018 52 12841 12850 1:CAS:528:DC%2BC1cXhvVOju7nN 10.1021/acs.est.8b04495
R.W. Tyl Abbreviated assessment of bisphenol A toxicology literature Semin Fetal Neonatal Med 2014 19 195 202 10.1016/j.siny.2013.11.010
ECHA (2021) Assessment of regulatory needs. https://echa.europa.eu/documents/10162/1bd5525c-432c-495d-9dab-d7806bf34312
R. McKenzie G. Bernhard B. Liley et al. Success of montreal protocol demonstrated by comparing high-quality UV measurements with “world avoided” calculations from two chemistry-climate models Sci Rep 2019 9 12332 1:CAS:528:DC%2BC1MXhslaru7fO 10.1038/s41598-019-48625-z
UNEP-Ozone secretariat (2023) Consumption of controlled substances-Data in tables|Ozone Secretariat. https://ozone.unep.org/countries/data-table?report_type=0&output_type=odp-CO2e-tonnes&party_grouping=individual&eu_member%5Bis_eu_member%5D=is_eu_member&period_start=1986&period_end=2022&ignore_zero=1&baseline=1&group_by=group&op=GENERATE+REPORT&form_id=ozone_country_data_form__report_table_form. Accessed 15 Dec 2023
Tapscott RE, Moore TA, Mather JD, Vitali JA (1998) Halon replacement research–a historical review of technical progress and regulatory decision points. Halons Options Technical Working Conference, Albuquerque, NM, https://www.nist.gov/system/files/documents/el/fire_research/R0000266.pdf
B. Sukornick Potentially acceptable substitutes for the chlorofluorocarbons: properties and performance features of HFC-134a, HCFC-123, and HCFC-141b Int J Thermophys 1989 10 553 561 10.1007/BF00507978
S. Benhadid-Dib A. Benzaoui Refrigerants and their environmental impact substitution of hydro chlorofluorocarbon HCFC and HFC hydro fluorocarbon. Search for an adequate refrigerant Energy Proc 2012 18 807 816 1:CAS:528:DC%2BC38XptlSmtrs%3D 10.1016/j.egypro.2012.05.096
E.A. Heath Amendment to the montreal protocol on substances that deplete the ozone layer (Kigali Amendment) Int Leg Mater 2017 56 193 205 10.1017/ilm.2016.2
D.J. Luecken R.L. Waterland S. Papasavva et al. Ozone and TFA impacts in North America from degradation of 2,3,3,3-tetrafluoropropene (HFO-1234yf), a potential greenhouse gas replacement Environ Sci Technol 2010 44 343 348 1:CAS:528:DC%2BD1MXhsFaks7fI 10.1021/es902481f
C.B. Rivela C.M. Tovar M.A. Teruel et al. CFCs replacements: reactivity and atmospheric lifetimes of a series of hydrofluoroolefins towards OH radicals and Cl atoms Chem Phys Lett 2019 714 190 196 1:CAS:528:DC%2BC1cXit1eis77N 10.1016/j.cplett.2018.10.078
J.C. Boutonnet P. Bingham D. Calamari et al. Environmental risk assessment of trifluoroacetic acid Hum Ecol Risk Assess Int J 1999 5 59 124 1:CAS:528:DyaK1MXitVelu74%3D 10.1080/10807039991289644
K.R. Solomon J.A. Carr L.H. Du Preez et al. Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review Crit Rev Toxicol 2008 38 721 772 10.1080/10408440802116496
W. Dekant R. Dekant Mammalian toxicity of trifluoroacetate and assessment of human health risks due to environmental exposures Arch Toxicol 2023 97 1069 1077 1:CAS:528:DC%2BB3sXjsFSgsr4%3D 10.1007/s00204-023-03454-y
Morgan K, Bonanno F (2022) Sustainability is no longer a “nice to have” goal for the data center industry|S&P Global Market Intelligence. https://www.spglobal.com/marketintelligence/en/news-insights/research/sustainability-is-no-longer-a-nice-to-have-goal-for-the-data-center-industry. Accessed 16 Oct 2023
Z. Wang J.C. DeWitt C.P. Higgins I.T. Cousins A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol 2017 51 2508 2518 1:CAS:528:DC%2BC2sXjtVCnurY%3D 10.1021/acs.est.6b04806
H. Knutsen T. Mæhlum K. Haarstad et al. Leachate emissions of short- and long-chain per- and polyfluoralkyl substances (PFASs) from various Norwegian landfills Environ Sci Process Impacts 2019 21 1970 1979 1:CAS:528:DC%2BC1MXhsFCgsLfO 10.1039/C9EM00170K
R.W. Helmer D.M. Reeves D.P. Cassidy Per- and polyfluorinated alkyl substances (PFAS) cycling within Michigan: contaminated sites, landfills and wastewater treatment plants Water Res 2022 210 1:CAS:528:DC%2BB3MXivVWms7vO 10.1016/j.watres.2021.117983
ECHA (2013) Grouping of substances and read-across approach Part 1: Introductory note. https://www.echa.europa.eu/documents/10162/17221/read_across_introductory_note_en.pdf/1343b1b8-e5d1-4e72-b9b3-8a99e940ab29
L. Lamon D. Asturiol A. Richarz et al. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques Part Fibre Toxicol 2018 15 37 1:CAS:528:DC%2BC1MXjvVCns7g%3D 10.1186/s12989-018-0273-1
T.W. Schultz P. Amcoff E. Berggren et al. A strategy for structuring and reporting a read-across prediction of toxicity Regul Toxicol Pharmacol 2015 72 586 601 1:CAS:528:DC%2BC2MXpt1Kktbc%3D 10.1016/j.yrtph.2015.05.016
OECD (2017) Guidance on grouping of chemicals. 2nd Edn. https://doi.org/10.1787/9789264274679-en
G. Patlewicz G. Helman P. Pradeep I. Shah Navigating through the minefield of read-across tools: a review of in silico tools for grouping Comput Toxicol 2017 3 1 18 10.1016/j.comtox.2017.05.003
T. Tate J. Wambaugh G. Patlewicz I. Shah Repeat-dose toxicity prediction with Generalized Read-Across (GenRA) using targeted transcriptomic data: a proof-of-concept case study Comput Toxicol 2021 19 1:CAS:528:DC%2BB38XitVWlt7fJ 10.1016/j.comtox.2021.100171
ECHA (2023) Substance group and analogy concept—ECHA. https://echa.europa.eu/de/support/registration/how-to-avoid-unnecessary-testing-on-animals/grouping-of-substances-and-read-across. Accessed 20 Dec 2023
Luo Y-R (2007) Comprehensive handbook of chemical bond energies. https://doi.org/10.1201/9781420007282
J. Hafner K. Fenner A. Scheidegger Systematic handling of environmental fate data for model development-illustrated for the case of biodegradation half-life data Environ Sci Technol Lett 2023 10 859 864 1:CAS:528:DC%2BB3sXhvFOkurbL 10.1021/acs.estlett.3c00526
G. Sigmund H.P.H. Arp B.M. Aumeier et al. Sorption and mobility of charged organic compounds: how to confront and overcome limitations in their assessment Environ Sci Technol 2022 56 4702 4710 1:CAS:528:DC%2BB38XotlSntL8%3D 10.1021/acs.est.2c00570
D. Zahn I.J. Neuwald T.P. Knepper Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives Anal Bioanal Chem 2020 412 4763 4784 1:CAS:528:DC%2BB3cXjvFKju7w%3D 10.1007/s00216-020-02520-z
M.D. Barratt Prediction of toxicity from chemical structure Cell Biol Toxicol 2000 16 1 13 1:CAS:528:DC%2BD3cXlt1yjsLY%3D 10.1023/A:1007676602908
J. Struyf Relating functional groups to the periodic table J Chem Educ 2009 86 190 10.1021/ed086p190
P.K. Singh A. Negi P.K. Gupta et al. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations Arch Toxicol 2016 90 1785 1802 1:CAS:528:DC%2BC2MXhsVGntbvF 10.1007/s00204-015-1587-5
K. Mansouri A. Abdelaziz A. Rybacka et al. CERAPP: collaborative estrogen receptor activity prediction project Environ Health Perspect 2016 124 1023 1033 1:CAS:528:DC%2BC1cXms1yitLw%3D 10.1289/ehp.1510267
J. Liu X. Lei Y. Zhang Y. Pan The prediction of molecular toxicity based on BiGRU and GraphSAGE Comput Biol Med 2023 153 1:CAS:528:DC%2BB3sXptFOlsA%3D%3D 10.1016/j.compbiomed.2022.106524
F. Freeling M. Scheurer J. Koschorreck et al. Levels and temporal trends of trifluoroacetate (TFA) in archived plants: evidence for increasing emissions of gaseous TFA precursors over the last decades Environ Sci Technol Lett 2022 9 400 405 1:CAS:528:DC%2BB38XhtVShurzL 10.1021/acs.estlett.2c00164
Q. Li Application of fragment-based drug discovery to versatile targets Front Mol Biosci 2020 7 180 1:CAS:528:DC%2BB3cXitlSisr7K 10.3389/fmolb.2020.00180
US EPA (2012) Estimation programs interface suiteTM for Microsoft® windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
K. Mansouri N. Kleinstreuer A.M. Abdelaziz et al. CoMPARA: collaborative modeling project for androgen receptor activity Environ Health Perspect 2020 128 1:CAS:528:DC%2BB3cXhvFSgtL%2FE 10.1289/EHP5580
Z. Zheng H.P.H. Arp G. Peters P.L. Andersson Combining in silico tools with multicriteria analysis for alternatives assessment of hazardous chemicals: accounting for the transformation products of decaBDE and its alternatives Environ Sci Technol 2021 55 1088 1098 1:CAS:528:DC%2BB3cXislWlsLvO 10.1021/acs.est.0c02593
E.L. Schymanski E.E. Bolton FAIRifying the exposome journal: templates for chemical structures and transformations Exposome 2022 2 osab006 10.1093/exposome/osab006
Schymanski E, Bolton E, Cheng T et al (2023) Transformations in PubChem—Full Dataset. 105281/zenodo8117741
E.L. Schymanski J. Zhang P.A. Thiessen et al. Per- and polyfluoroalkyl substances (PFAS) in PubChem: 7 million and growing Environ Sci Technol 2023 57 44 16918 16928 1:CAS:528:DC%2BB3sXitFOhtLvM 10.1021/acs.est.3c04855
Z.-Q. Shi Y.-S. Liu Q. Xiong et al. Occurrence, toxicity and transformation of six typical benzotriazoles in the environment: a review Sci Total Environ 2019 661 407 421 1:CAS:528:DC%2BC1MXhs1als7Y%3D 10.1016/j.scitotenv.2019.01.138
T. Cheng Y. Zhao X. Li et al. Computation of octanol−water partition coefficients by guiding an additive model with knowledge J Chem Inf Model 2007 47 2140 2148 1:CAS:528:DC%2BD2sXht1KisbvF 10.1021/ci700257y
R. Wang Y. Fu L. Lai A new atom-additive method for calculating partition coefficients J Chem Inf Comput Sci 1997 37 615 621 1:CAS:528:DyaK2sXivFKluro%3D 10.1021/ci960169p
M.L. Card V. Gomez-Alvarez W.-H. Lee et al. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments Environ Sci Process Impacts 2017 19 203 212 1:CAS:528:DC%2BC2sXjtl2jsr4%3D 10.1039/C7EM00064B
A. Cassano A. Manganaro T. Martin et al. CAESAR models for developmental toxicity Chem Cent J 2010 4 S4 1:CAS:528:DC%2BC3cXpvFCmsLs%3D 10.1186/1752-153X-4-S1-S4
M. Honma An assessment of mutagenicity of chemical substances by (quantitative) structure–activity relationship Genes Environ 2020 42 23 10.1186/s41021-020-00163-1
E.L. Schymanski T. Kondić S. Neumann et al. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag J Cheminform 2021 13 19 1:CAS:528:DC%2BB3MXhs1GktLbP 10.1186/s13321-021-00489-0
Y. Wang X. Ning G. Li N. Sang New insights into potential estrogen agonistic activity of triazole fungicides and coupled metabolic disturbance J Hazard Mater 2022 424 1:CAS:528:DC%2BB3MXit1yhtLbN 10.1016/j.jhazmat.2021.127479
K.-U. Goss H.P.H. Arp G. Bronner C. Niederer Nonadditive effects in the partitioning behavior of various aliphatic and aromatic molecules Environ Toxicol Chem 2009 28 52 60 1:CAS:528:DC%2BD1cXhsFCqsbfI 10.1897/08-189.1
D.L. Villeneuve K. Coady B.I. Escher et al. High-throughput screening and environmental risk assessment: state of the science and emerging applications Environ Toxicol Chem 2019 38 12 26 1:CAS:528:DC%2BC1cXisFKrtrzK 10.1002/etc.4315
J. Hollender E.L. Schymanski L. Ahrens et al. NORMAN guidance on suspect and non-target screening in environmental monitoring Environ Sci Eur 2023 35 75 10.1186/s12302-023-00779-4
G.M. Cramer R.A. Ford R.L. Hall Estimation of toxic hazard—a decision tree approach Food Cosmet Toxicol 1976 16 255 276 10.1016/S0015-6264(76)80522-6
EFSA Scientific Committee, More SJ, Bampidis V, et al (2019) Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFS2 17:5708. https://doi.org/10.2903/j.efsa.2019.5708
W. Wohlleben A. Mehling R. Landsiedel Lessons learned from the grouping of chemicals to assess risks to human health Angew Chem Int Ed 2023 62 1:CAS:528:DC%2BB3sXmtVWlsL8%3D 10.1002/anie.202210651
H. Zhu J. Zhang M.T. Kim et al. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants Chem Res Toxicol 2014 27 1643 1651 1:CAS:528:DC%2BC2cXhsV2hurzF 10.1021/tx500145h
Enoch SJ, Roberts DW (2011) Approaches for grouping chemicals into categories. https://doi.org/10.1039/9781849731744-00030
G.T. Ankley R.S. Bennett R.J. Erickson et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment Enviro Toxic Chem 2010 29 730 741 1:CAS:528:DC%2BC3cXjt12ju7Y%3D 10.1002/etc.34
M. Vinken The adverse outcome pathway concept: a pragmatic tool in toxicology Toxicology 2013 312 158 165 1:CAS:528:DC%2BC3sXhsV2ksbfN 10.1016/j.tox.2013.08.011
A. Rodríguez-Carrillo A.K. Rosenmai V. Mustieles et al. Assessment of chemical mixtures using biomarkers of combined biological activity: a screening study in human placentas Reprod Toxicol 2021 100 143 154 1:CAS:528:DC%2BB3MXjs1yktbs%3D 10.1016/j.reprotox.2021.01.002
M. Zare Jeddi N.B. Hopf S. Viegas et al. Towards a systematic use of effect biomarkers in population and occupational biomonitoring Environ Int 2021 146 1:CAS:528:DC%2BB3MXktVSjsA%3D%3D 10.1016/j.envint.2020.106257
S.O. Hansson D. Oughton S.O. Hansson Chapter 9—ALARA: what is reasonably achievable? Radioactivity in the environment 2013 Elsevier 143 155