Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Regularization and Robust Stabilization of Singular Uncertain Fractional-Order Systems
NDOYE, Ibrahima; Zasadzinski, Michel; Darouach, Mohamed et al.
2011In 18th IFAC World Congress, Milano, Italy, 2011
Peer reviewed
 

Files


Full Text
IFAC-World-Congress_2149.pdf
Author postprint (194.5 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Singular fractional-order systems; parameter uncertainty; predictive and memoryless static feedbacks; regularization; robust stabilization; LMIs
Abstract :
[en] In this paper, robust asymptotical stabilization problem via a predictive and memoryless static feedbacks for uncertain singular fractional-order systems for the fractional-order belonging to 0<\alpha<2 is investigated. The parameter uncertainty is assumed to be time-invariant and norm-bounded appearing in the state matrix. Suffcient linear matrix inequalities (LMIs) conditions for regularization of uncertain singular fractional-order systems are given. Then, the predictive controller aims to regularizing the uncertain singular fractional-order systems while the memoryless state feedback is designed to stabilize the resulting regularized system. A numerical example is given to demonstrate the applicability of the proposed approach.
Disciplines :
Computer science
Author, co-author :
NDOYE, Ibrahima ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; University of Lorraine > Research Center for Automatic Control of Nancy (CRAN UMR,7039, CNRS)
Zasadzinski, Michel
Darouach, Mohamed
Radhy, Nour-Eddine
Language :
English
Title :
Regularization and Robust Stabilization of Singular Uncertain Fractional-Order Systems
Publication date :
2011
Event name :
18th IFAC World Congress (2011)
Event date :
2011
Audience :
International
Main work title :
18th IFAC World Congress, Milano, Italy, 2011
ISBN/EAN :
978-3-902661-93-7
Pages :
15031-15036
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 16 September 2013

Statistics


Number of views
72 (4 by Unilu)
Number of downloads
6 (1 by Unilu)

Bibliography


Similar publications



Contact ORBilu